Archive for March, 2021

Studio 1558 overheating problem in detail

I have previously mentioned in passing, for example here and here, that the Dell Studio 1558 notebook computers are prone to overheating. I figured it was time to go into this in a bit more detail.

As I mentioned in the first post linked above, the configurations of some Studio 1558 computers (particularly ones with discrete graphics and quad-core CPUs) tended to overheat even when fresh from the factory. Dell addressed this with the A04/A05 BIOS which resolved the problem for most customers. However, people are still reporting the issue and selling used 1558 systems with comments like “The unit boots to BIOS, but a few minutes later it shuts off. No further testing has been done.” This is a different problem, caused by a combination of accumulation of lint in the fan and degradation of the heatsink compound over 10 years or so.

The fix is easy, once you get to the fan. Getting there is the hard part. Refer to the service manual (or DCSE if you have it) for detailed disassembly procedures. If you aren’t comfortable disassembling the system to that extent, most repair shops that fix laptop computers should be able to do this for you. I also offer this service, although I probably won’t be cost-effective for you unless you are having other services performed at the same time.

This picture shows the accumulation of lint that has built up over 10 years of use. The air exhaust through the cooling fins is completely blocked. The heatsink assembly was removed from the motherboard and the lint was carefully vacuumed out. Then the fan was removed and the whole heatsink assembly was put through an ultrasonic cleaner to remove any remaining lint. A new replacement fan was then installed.

Click on the image for full-screen view

Here you can see the hardened heatsink compound. It had hardened to the extent that there was almost no thermal conduction between the top of the CPU and the heatsink assembly. After carefully chipping away the larger chunks of material, the assembly was left to soak in solvent to remove the remaining compound. At the same time, the old thermal pads were removed from the part of the heatsink assembly that cools the HD5470 graphics chip and the 2 lower video RAM chips. The surfaces of the graphics and RAM chips were cleaned to remove the oils that had separated out of the old thermal pads.

Click on the image for full-screen view

The existing CPU chip (an i7-720QM) also had a large amount of hardened thermal compound on it. As this repair order also involved upgrading the CPU to an i7-740QM, no cleaning was done on this chip.

Click on the image for full-screen view

After installing the new CPU chip, all surfaces were cleaned with 2-part Arctic Silver cleaner / prep fluid. New thermal pads were cut from Arctic Silver thermal pad material (1mm for the 2 video RAM chips, .5mm for the graphics chip) and Arctic Silver heatsink compound was used on the CPU. After reassembly, the processor idle temperature is in the 49-51° C range and with intense CPU usage, reaches 76° C. The system has run under heavy load for more than 24 hours with no faults.

I can repair or upgrade your Studio 1558 (and other models, too)

As you can see from my many previous posts about the Dell Studio 1558 notebook, I can perform just about any repair or upgrade you might want:

  • Replace broken lid / hinges / power button
  • Replaced cracked or otherwise broken display screens, either with same type or an upgraded one – contact me for a free part compatibility check as some conversions will be more expensive than others
  • Repair or replace broken keyboard keys or trackpad buttons
  • Replace standard keyboard with backlit version or vice versa
  • Replace a keyboard in one language with one in a different language – most languages are available
  • Repair broken connectors (power, USB, video, etc.)
  • Fix overheating systems
  • Install BIOS with unlocked advanced menus
  • Replace hard disk drive or install a SSD (with all of your software and files copied over)
  • Conversion of various 1555 and 1557 models to 1558 models – frankly, with the low parts pricing I offer for 1558 work, you might as well go directly to the top-of-the-line 1558 configuration of your wildest dreams. I’ll reuse as many of the parts from your 1555 or 1557 as I can, to keep your costs low
  • Any upgrade at all – see my post “The Ultimate Studio 1558” for ideas
  • Have a cracked or scratched lid, or just tired of the style you have? Let me swap it for you! Many styles are available
  • Replacement 6- and 9-cell batteries available new from a trusted manufacturer in China, with a 1-year warranty on new replacement batteries as long as an appropriate Dell charger is used
  • Operating system installations (limited to clean installs – back up all of your data first or buy a new SSD and get your old drive back in a USB caddy if you desire)

I have a huge collection of spare parts, both new and used, as well as complete systems in a variety of configurations.

Service will typically be between $50 to $100 plus the cost of any needed parts (at great discounts!) and insured return shipping to you. A repair evaluation is free as long as you pay for insured return shipping. I can also provide estimates based on your description of the problem and pictures you provide, but be aware that “sight unseen” estimates are just that – estimates. The actual cost might be higher or lower once I evaluate your system in person.

I can also provide some repairs and upgrades for the Studio 153x models, but inquire first to make sure I have the needed parts on hand, as most of the 155x parts are incompatible with the 153x parts.

My standard warranty for repairs made with my “used recertified” parts is 60 days for the recurrence of the same problem and 120 days for repairs made with my “new” or “new old stock” parts. If a repaired or replaced component fails within that time period, it will be made right by me at no charge other than your cost to ship the system back to me – I cover the shipping and insurance back to you in this case. Any parts replaced under my warranty are warranted for the duration of my original warranty plus an additional 10 days as a goodwill gesture. So, if you have a repair with a 120-day warranty and it fails after 100 days, when your system is returned to you it will have 30 days of warranty left when you receive it – 20 carried over from the original 120-day warranty plus 10 days of goodwill warranty.

If you decide to provide your own replacement parts for me to install, you assume all responsibility for their proper functioning. Such repairs carry a 30-day warranty, solely on the work I performed, and there is no warranty on customer-supplied spare parts. I will endeavor to test your replacement part before installing it, but please understand this is a “reasonable effort” test and I might not discover all problems with your replacement part.

In no extent is any warranty to be construed as applying to the complete system unless you specifically purchased a rebuilt whole system from me – it is a parts and labor warranty for only the parts and labor performed and itemized on the repair invoice.

Feel free to contact me at:

Instead of shipping your system to me, you can also drop off and/or pick up at our Hudson County, NJ location at no charge. Such appointments must be scheduled in advance for a mutually agreeable time. There is excellent service from many major bus lines and the PATH train (between NY and NJ) with stops near my office. Details can be provided if you tell me where you are coming from when you arrange the drop off of your system. This is only drop off and/or pick up service – business rules prevent me from allowing you to watch your system being worked on or waiting while it is serviced.

I generally do not sell individual parts, only a complete repair service. However, I usually have a limited number of certain parts available for sale: Scratch / dent / cracked lids, all guaranteed to be fully functional but not cosmetically suitable to be used for my repair purposes; various older models of WiFi / mobile broadband cards, etc.

IMPORTANT NOTE: If requested, operating system installs will be done with a legitimate disc and serial number, either sold by me or provided by you. I do NOT offer “cracked” or pirated Windows installations.

Studio 1558 drivers for Windows 10

As I mentioned in some other recent blog entries, I recently installed Windows 10 (x64) on my Studio 1558 computers. Note that this was a clean install on a formatted drive – if you do an in-place upgrade from an earlier version of Windows, things may behave differently.

Windows 10 (LTSC 1809 in my case) installed without any difficulty, but even after installing all of the Microsoft updates, some device drivers were still missing. As Dell never officially supported anything newer than Windows 7 on the Studio 1558, it isn’t a simple case of going to the Dell support page for the 1558 and downloading drivers. Some older drivers will install correctly, some will complain that they are for a different Windows version or will install but give errors when used. I have collected the device drivers needed to clear all of the “Unknown device” errors that show up in Device Manager. The system could possibly benefit from additional drivers such as the Intel chipset driver, but it functions perfectly without them. You may not need all of these devices – my 1558 has just about every option imaginable.

The drivers you may need are:

  • Wireless 365 Bluetooth module driver (says it is for the Wireless 380 module, works with the Wireless 365)
  • ST Microelectronics Free Fall Data Protection driver
  • Ricoh Card Reader R5C833, R5U230 driver
  • Dell QuickSet application
  • DW5808 LTE Mobile Broadband and GNSS driver
  • DW5808 GPS Rollover fix
  • DW5620 Mobile Broadband driver
  • Verizon Access Manager (VZAM) for DW5600 and DW5620 application (not needed for DW5808 card)

I am listing Verizon Access Manager for the DW5620 even though it is not strictly required – after installing the DW5620 Mobile Broadband driver, the cellular modem will show up as a usable device in Windows 10. However, if you rely on the native Windows support you won’t have access to the usage data that VZAM provides and as I mentioned in my post about the newer DW5808 module, Windows 10 has no native SMS support. The Mobile Broadband SMS Toolkit mentioned in that post works with the DW5620 as well, so you can use it to send and receive text messages.

I have installed each of these drivers on my Studio 1558 and they all work properly under Windows 10 x64. It is extremely unlikely that you are running the 32-bit (x86) version of Windows 10, since you’d be limited to under 4GB of RAM which will make the system pretty unusable – install the 64-bit (x64) version, even if you only have 4GB of RAM installed. Note that you can upgrade the Studio 1558 to a maximum of 16GB as I describe here.

I have verified that each of these files is downloadable as of March 2nd, 2021 via the link I’ve given. Vendors may re-organize their web sites, so if you are reading this at some point in the future, those links may not work. I have mirrored each of these drivers (with additional information in the filename so you can see what the file applies to) here. If at all possible, you should use the official vendor downloads and not the ones here since you don’t know if my files have been tampered with or not. I have verified the MD5 checksum (when available from the vendor site) with each of the files in my mirror.

DW5808 Mobile Broadband on the Studio 1558

I have been running DW5620 mobile broadband (cellular data) cards in my Studio 1558 notebook computers for many years. This is a 3G / EVDO card that will fall back to 1xRTT if a 3G network is unavailable. Although I have these cards activated on Verizon, they are no longer activating new 3G devices on their network – 4G is required at a minimum. This is so the existing population of 3G and older devices can “age out” and Verizon can re-use those frequencies for 4G and newer service instead, per this article in The Register. That article also says they intended to shut down their 3G network on December 30, 2020 although it appears to have been postponed for an unknown amount of time. The article also quotes a Verizon spokesperson as saying “Yes, our 3G network is still live today. We’re actively working with customers to migrate them to new technology. It’s not accurate to say the network will remain active ‘for some time.’ While we want to make sure we care for our customers – both consumer and IoT – our plan is to move them ASAP and retire the 3G network.” In any event, the writing was on the wall and it was time to upgrade the mobile broadband card in my Studio 1558.

I decided that as part of my Studio 1558 re-evaluation, 16 GB memory upgrade and Windows 10 install, that I would also upgrade the mobile broadband card to the latest possible. That is more difficult than it sounds because the newer cards are generally M.2 instead of the Mini PCIe form factor found in the 1558. The newest card I’ve found is the DW5808 (not the DW5808e) which is a Dell-branded Sierra Wireless MC7355 (PDF specification). That is a card that according to the datasheet supports LTE, HSPA+, GSM/GPRS/EDGE, EV-DO Rev A and 1xRTT. It is supported by all major US cellular providers, although I have only used it extensively with Verizon. I did test an AT&T SIM and it allowed me to connect to AT&T’s “sign up for mobile broadband service” page.

When purchasing one of these cards, it is preferable to purchase a new one as that guarantees it has never been blacklisted for being on an account that has an unpaid balance with a provider. A new card should also come with a manual and a full set of stickers. The stickers include the IMEI (taped to the top of the module) which is applied next to the SIM slot in the battery compartment, an FCC sticker (to be applied in the matching location on the inside of the 1558’s removable bottom access cover) and a Dell part number sticker (also for the inside of the cover). Here is a picture of what you should get, courtesy of eBay seller pcs_jec:

Click on the image for full-screen view

If you already have a mobile broadband card in your Studio 1558, you can simply replace it with the DW5808. Note that the antenna connections on the DW5808 are reversed compared to the DW5620, so be sure to re-connect the antennas in the proper locations. The center antenna connector is not used in this application. If you do not already have a mobile broadband card installed in your 1558, make sure that your system (primarily the lid) supports it and has the appropriate antenna connectors. You can refer to my blog post “Dell Studio 155x Wireless / Networking Options” here for more information. Here is the antenna connector layout from the Sierra Wireless “Product Technical Specification”:

Unlike the older DW5620 cards, a SIM is needed for service – if you don’t have one installed, trying to connect to mobile broadband will display the message “Insert SIM”. The advantage of this method is that you can just move the SIM card from computer to computer without needing to talk to your cellular provider about changing devices. One downside to the SIM location (in the battery compartment) in the 1558 is that it is a bit tricky to remove the SIM once it is inserted. Make sure to observe the correct orientation when inserting the SIM (there is a molded image of the correct orientation next to the SIM slot in the battery compartment). This picture shows the full-size SIM inserted in the SIM slot with the orientation matching what is molded into the case above the slot, in the center of the picture. You can also see the location for the IMEI sticker:

Click on the image for full-screen view

You will need the appropriate driver for your operating system. For Windows 10, that is “DW5808E and DW5808 LTE Mobile Broadband and GNSS Driver” from here. Windows 10 has built-in support for mobile broadband, but the Dell driver is still needed. Older versions of Windows needed an additional application to handle mobile broadband – for example, on Windows 7 with the DW5808 card, the “Connection Manager Application for DW5808/5808e/5809e/5570” application is required. On older cards like the DW5620 the application is usually provided by the cellular carrier. For example, VZAccess Manager (VZAM).

The one thing all of these applications have in common is that they are (for lack of a better word) “twitchy”. VZAM on the DW5620 would frequently report “card not detected” or fail to power the card on or off. The only corrective action at that point is to reboot and possibly power cycle the computer. I’ve run into this on multiple Dell and HP notebooks, even with factory-installed mobile broadband. Unfortunately, this behavior continues with the DW5808, at least in the Studio 1558. To be fair, neither Dell nor Sierra Wireless ever implied that this combination was tested by them. In my testing, either the board is detected at startup or it isn’t. If it isn’t, a reboot will fix it. Not really any different than the older DW5620 with VZAM. In further testing, this seems to be related to not having a SIM installed in the computer – I suspect the card is “bootlooping” trying to recover from a “no SIM” condition. All of the 1558/DW5808 systems I have that include SIMs behave properly – it is only the ones without SIMs that misbehave.

Like the DW5620, the DW5808 includes GPS functionality. Unlike the DW5620, the DW5808 does not make that functionality available as a COM port by default. A registry modification is needed. That is only for advanced users, but if you’ve gotten this far I think you qualify. The particular key is in HKLM > SOFTWARE > Sierra Wireless > QDL and you need to change the USBCOMP value from 9 to 8. The underlying reason is rather complex, but if you want more information I’d suggest starting here. As you can see from this screenshot, after changing the USBCOMP setting the DW5808 appears as a modem, as a network adapter and as 2 USB serial ports. DM is Device Management and NMEA is GPS:

Click on the image for full-screen view

The DW5808 and many other cards from the same era suffer from the “GPS Rollover” problem which causes the date to be reported incorrectly after November 3rd, 2019. As Sierra Wireless describes it, “The Global Positioning System provides positioning fixes and timing information to GPS receivers (such as MC73xx, EM73xx, WP75xx and WP85xx modules). The timing information includes a ‘week’ component represented as an integer value from 0–1023. This value will ‘roll over’ on 03 November 2019. As a result, the time reported to customer applications by MC73xx, EM73xx, WP75xx and WP85xx modules will be incorrect. (Note: Positioning fixes will not be affected.)” Since Windows uses the Windows Time Service and not GPS for setting the computer’s time, this is likely a non-issue for most users. However, Dell does provide a fix if you need it. Note that despite being described as “Application”, it is the one-time rollover fix and does not permanently install any software on your computer.

The Dell DW5808 Windows 10 driver installation also adds some Bluetooth device drivers, despite the DW5508 not including any Bluetooth hardware. This may be because the driver supports multiple card models. There is no Bluetooth hardware in the DW5808, so if you need Bluetooth support you’ll still need the Dell Wireless 365 Bluetooth adapter.

There doesn’t seem to be a native way to send or receive text or multimedia messages (SMS/MMS) in Windows 10. Microsoft offers the “Your Phone” Microsoft Store app which just links a Windows 10 PC to a cell phone and doesn’t use the internal mobile broadband adapter. There is a native Windows 10 (not Microsoft Store) utility called “Mobile Broadband SMS Toolkit” available here for free. Note that the developer is Russian and the web site is hosted in Latvia, so if you handle sensitive information on your computer you may want to further evaluate the situation before installing the app.

Click on the image for full-screen view

In addition to sending and receiving SMS messages, the app has quite a few other functions, including managing contacts and displaying a lot more information than Windows provides. As you can see, the “Current data class” is LTE:

Click on the image for full-screen view

Performance is quite good (measured with Ookla Speedtest). The DW5808 has a theoretical speed of 100Mbit/sec down and 50Mbit/sec up. I have never seen a download speed faster than around 40Mbit/sec. This could be due to a number of factors, including the computer lid not having the correct antennas for all of the frequencies used by this modem, or simply comes from network congestion (this is New York City, after all). Upload performance is quite good at 44Mbit/sec which approaches the theoretical maximum of 50Mbit/sec:

Click on the image for full-screen view