Machine Translated by Google

Programming Guide

FD6818

REV.1.0.0

Table of contents

content

revision history	1
Launch block diagram	2
Receiving block diagram	9
Interface timing	15
Configuration process	16
Send and receive status settings	18
Band, frequency point, bandwidth mode settings	20
Set modulation limits and MIC sensitivity	22
Set transmit power	23
Receive mute (MUTE) and volume settings	24
Audio Response Adjustment	25
Voice Mode Settings	26
SCRAMBLE mode setting	28
DTMF mode settings	29
SELCALL mode setting	31
1050Hz single tone decoding	32
FSK mode settings	33
DISC baseband processing mode setting	36
BYPASS Mode Settings (for DMR/dPMR) 38	
VCO Mode Settings	39
Key tone side tone BEEP and other settings	40
Sub-Audio Setup	42
Voice control (VOX), transmit timeout (TOT) settings	46
Squelch (SQ) settings and RSSI, NOISE and SNR	47
SOFT MUTE settings	48

revision history

revision history

revision date	modify the content	revision location
2018.07.24	Wide and narrow bandwidth settings are wrong, delete the settings for REG_3AH	
2018.07.24	In VCO mode, set REG_03H incorrectly	VCO Mode Settings
2018.09.06	Modify the bandwidth setting at 25k/12.5k The	Band, frequency point, bandwidth mode settings
2018.09.07	first revision of the chip, modify the frequency band definition range	Band, frequency point, bandwidth mode settings

Launch block diagram

Block diagram description:

(1) MIC channel PGA analog gain

Register	Address(HEX)	Description
mic_pga_gain[4:0]	REG_18H[15:11]	Value Gain MIC_Sens(mV)
		00000 = not valid
		00001 = 4.6250 ~26.2
		00010 = 6.1250 ~19.8
		00011 = 10.6250 ~11.4
		00100 = 9.1250 ~13.3
		00101 = 13.6875 ~ 8.9
		00110 = 15.1875 ~ 8.0
		00111 = 19.6875 ~ 6.2
		01000 = 12.1250 ~10.0(default)
		01001 = 16.6875 ~ 7.3
		01010 = 18.1875 ~ 6.7
		01011 = 22.6250 ~ 5.4
		01100 = 21.2500 ~ 5.7
		01101 = 25.6250 ~ 4.7
		01110 = 27.1250 ~ 4.5
		01111 = 31.7500 ~ 3.8
		10000 = 18.1875 ~ 6.7
		10001 = 22.6875 ~ 5.3
		10010 = 24.2500 ~ 5.0
		10011 = 28.7500 ~ 4.2
		10100 = 27.2500 ~ 4.4
		10101 = 31.7500 ~ 3.8
		10110 = 33.1250 ~ 3.7
		10111 = 37.6250 ~ 3.2
		11000 = 30.1875 ~ 4.0
		11001 = 34.6250 ~ 3.5
		11010 = 36.1250 ~ 3.4
		11011 = 40.7500 ~ 3.0
		11100 = 39.0000 ~ 3.1

	11101 = 43.7500 ~ 2.8
	11110 = 45.1250 ~ 2.7
	11111 = 49.5625 ~ 2.4

The value of the gain table of mic_pga_gain above represents the relative gain. Modifying this register will affect the VOX detection range and needs to be reset

Set the VOX threshold. When adjusting the MIC sensitivity, try not to modify this register, just modify the mic_sens_gain register, see the text for details

Refer to the "Setting Modulation Limits and MIC Sensitivity" section of the file

(2) TONE1, TONE2 generation

Register	Address(HEX)	Description
tone1_gen	REG_70H[15]	Enable TONE1
tone1_gain[6:0]	REG_70H[14:8]	TONE1 tuning gain
tone2_gen	REG_70H[7]	Enable TONE2
tone2_gain[6:0]	REG_70H[6:0]	TONE2 tuning gain
tone1_freq[15:0]	REG_71H[15:0]	TONE1 frequency. control word
		=freq(kHz)* 2^26/6500
tone2_freq[15:0]	REG_72H[15:0]	TONE2 frequency- control word
		=freq(kHz)* 2^26/6500

If tone1_gen=1, the MIC input will be bypassed and a monophonic tone1 will be generated.

If tone1_gen=1, and tone2_gen=1, the MIC input is bypassed, and two-tone tone1+tone2 is generated at the same time.

(3) MIC DC filter

Register	Address(HEX)	Description
dcc_tx_bypass	REG_7EH[7]	1=MICIN DC Filter bypass
dcc_tx_bw[2:0]	REG_7EH[5:3]	MICIN DC Filter bandwidth(3dB) select
		111=15Hz;110=30Hz;101=60Hz;100=120Hz;
		011=240Hz;010=480Hz;

Default dcc_tx_bypass=0, dc_tx_bw=111. When used as DMR/dPMR mode, this DC can be turned off by setting dcc_tx_bypass=1

filter. When modifying the transmit frequency, you can use dcc_tx_bw=011 or 010 to attenuate 300Hz.

(4) Transmission path selection 1

Register	Address(HEX)	Description
audio_tx_mute	REG_50H[15]	1=Audio Tx Mute

audio_tx_mute can be used for idle between DTMF transmit symbols.

(5) Transmitting voice companding

See the "Voice Mode Settings" section of the documentation for details.

(6) Transmit speech pre-emphasis

Register	Address(HEX)	Description	
audio_emph_tx_bypass	REG_9BH[0]	1=PRE-EMPHASIS bypass	

(7) Transmit voice scrambling

See the "SCRAMBLE Mode Settings" section of the document for details.

(8) Transmit voice 300Hz high pass filter

Register	Address(HEX)	Description
audio_hpf_tx_bypass	REG_9BH[3]	1=Audio HPF 300Hz bypass for TX

(9) Transmit voice gain 1 (MIC sensitivity adjustment)

Register	Address(HEX)	Description
mic_sens_gain[5:0]	REG_97H[13:8]	MIC sensitivity adjust gain
		0=mute, 63=max, 0.5dB/step

See the "Setting Modulation Limits and MIC Sensitivity" section of the document for detailed instructions

(10) Transmit speech low-pass filter 1

Register	Address(HEX)	Description
audio_lpf1_tx_bypass	REG_9BH[2]	1=Audio LPF1 bypass for TX

(11) Transmit voice limiter

Register	Address(HEX)	Description
audio_tx_limit_bypass	REG_50H[10]	1=Audio Tx Limit bypass
audio_tx_limit[9:0]	REG_50H[9:0]	Audio Tx Limit Value

It is recommended not to modify this register, the modulation limit only needs to adjust the dev_sh and dev_lvl registers (see the document "Setting the modulation limit and MIC for details"

Sensitivity" section).

(12) Transmit speech low-pass filter 2

Register	Address(HEX)	Description
audio_lpf2_tx_bypass	REG_9BH[1]	1=Audio LPF2 bypass for TX
audio_lpf2_tx_sel[1:0]	REG_43H[8:6]	Audio LPF bandwidth (Apass=1dB) for Tx
		100 = 4.5 kHz
		101 = 4.25 kHz
		110 = 4 kHz
		111 = 3.75 kHz
		000 = 3 kHz
		001 = 2.5 kHz
		010 = 2 kHz
		011 = 1.7kHz

(13) Transmit FSK code

See the "FSK Mode Settings" section for details.

(14) Transmission path selection 2

Register	Address(HEX)	Description
audio_tx_path_sel[1:0]	REG_9DH[3:2]	01=select pre-emphasis output
		10=reserved
		11=select LPF2 output

Transmission path selection, the output of several nodes can be selected for transmission.

(15) Transmit speech gain 2

Register -	Address(HEX)	Description
audio_tx_gain_sh [2:0]	REG_53H[12:10]	-111=max,000=min
		0~~42dB, 6dB/step, digital gain
audio_tx_gain[4:0]	REG_53H[4:0]	0=min,31=max

-6~3.3dB, ~=1dB/step, digital gain

ð

(16) Transmit sub-audio generation

See the sub-audio settings section of the documentation for details.

(17) AF DAC channel selection

Register	Address(HEX)	Description
afout_invert	REG_47H[13]	1 = invert afout
afout_mode[4:0]	REG_47H[12:8]	0x10 = MUTE
		0x11 = RX AFOUT
		0x18 = BEEP/TX Side ToneÿCTCSS/CDCSS is
		not includeÿ
		0x15 = RX ALARM TONE

This register is multiplexed for transceiver and can be used to set mute, receive AF output and sidetone BEEP output.

(18) AF DAC analog gain

Register	Address(HEX)	Description
afout_en	REG_03H[9]	1=Enable AFOUT DAC
dac_vgain[3:0]	REG_23H[3:0]	DAC maximum output level

Whether it is output receiving AF or BEEP sidetone, you need to set afout_enable=1 to enable AF DAC. gain dac_vgain setting, The recommended maximum value is 1111 (default). Digital gain can be used for volume adjustment. For details, please refer to the document "Receive Mute (MUTE) and Volume Settings" part.

(19) Transmit modulation limitation

Register	Address(HEX)	Description
dev_in	REG_40H[12]	Enable FM deviation
dev_sh[3:0]	REG_40H[11:8]	FM deviation coarse tuningÿ
		0000=max, 1111=min

dev_lvl[7:0]	REG_40H[7:0]	FM deviation fine tuningÿ
		0000=min, 1111=max,
		GAIN=(256+dev_lvl[7:0])>>dev_sh[3:0]

If only used as VCO, you can set dev_en=0 to disable FM modulation. For details on modulation limits, see the document "Setting Modulation Limits and MIC

Sensitivity" section.

(20) Transmit power control

For detailed instructions, see the "Setting Transmit Power" section of the document.

(21) Voice control (VOX) detection

For details, see the "Voice Control (VOX), Transmit Timeout (TOT) Settings" section of the document.

Receiving block diagram

Block diagram description:

(1) Analog RF front-end and gain

Register	Address(HEX)	Description
Ina_peak_rssi[7:0]	REG_62H[7:0]	RSSI after LNA, 1dB/step. (Read Only)

Broadband signal strength indication after LNA.

(2) Receive AGC

(2) Receive AGC		
Register	Address(HEX)	Description
agc_rssi[7:0]	REG_62H[15:8]	RSSI after DCC, 1dB/step. (Read Only)

Narrowband digital signal strength indication after ADC and DCC.

(3) Receive IQ digital gain 1

Register	Address(HEX)	Description
dig_gain_rx[4:0]	REG_7DH[12:8]	Gain after AGC, digital down conversion. 1dB/
		step

(4) Receive IQ filter, digital gain 2

Register	Address(HEX)	Description
firlpf_bw[2:0]	REG_43H[14:12]	RF filter bandwidth (Apass=0.1dB)
		000 = 1.7 kHz
		001 = 2 kHz
		010 = 2.5 kHz
		011 = 3 kHz
		100 = 3.75 kHz
		101 = 4 kHz
		110 = 4.25 kHz
		111 = 4.5 kHz
		if wb=1, firlpf_bw *=2;
firlpf_bw_for_weak[2:0]	REG_43H[11:9]	RF filter bandwidth when signal is weak.
wb	REG_43H[5]	1 = 25kHz/20kH; 0 = 12.5kHz/6.25kHz
firlpf_gain[1:0]	REG_43H[1:0]	Gain after FIR LPF

00=0dB; 01=6dB; 10=12dB; 1	l1=18dB
----------------------------	---------

(5) Automatic Frequency Calibration (AFC)

See the "AFC Settings" section of the document for detailed instructions.

(6) FM demodulation and gain

Register	Address(HEX)	Description
fmdem_gain[1:0]	REG_44H[12:11]	Gain after FM Demodulation
		00=0dB; 01=6dB; 10=12dB; 11=18dB

(7) SQÿNOISEÿSNRÿRSSI

See the Squelch (SQ) Settings and RSSI, NOISE and SNR section of the document for detailed instructions.

(8) Receive DISC signal gain

Register	Address(HEX)	Description
audio_rx_gain1[5:0]	REG_96H[13:8]	0=mute, 63=max, 0.5dB/step

The DISC signal contains both audio and sub-audio, so this register adjusts both audio and sub-audio gains.

(9) Receive FSK decoding

See the "FSK Mode Settings" section of the document for details.

(10) Sub-audio low-pass filter, sub-audio decoding

Register	Address(HEX)	Description
subau_rx_dcc_bw[2:0]	REG_B6H[12:10]	CTC/DCS Rx HPF BW
		000=bypass;001=60Hz;010=30Hz;011=15Hz;

		100=8Hz;101=4Hz;110=2Hz;111=1Hz
subau_tx_atten_gain[1:0]	REG_B6H[9:8]	CTC/DCS Tx Atten Gain, -6dB/step
subau_rx_gain1[1:0]	REG_B6H[7:6]	CTC/DCS Rx Gain1, -6dB/step
subau_rx_gain2[1:0]	REG_B6H[5:4]	CTC/DCS Rx Gain2, -6dB/step
subau_rx_gain3[3:0]	REG_B6H[3:0]	CTC/DCS Rx Gain3, -6dB/step

For detailed instructions on sub-audio decoding, see the "Sub-audio Settings" section of the document.

(11) Receive voice 300Hz high-pass filter

Register	Address(HEX)	Description
audio_hpf_rx_bypass	REG_9BH[9]	1=Audio HPF 300Hz bypass for RX

(12) Receive voice descrambling

See the "SCRAMBLE Mode Settings" section of the document for details.

(13) Receive speech low-pass filter 1

Register	Address(HEX)	Description
audio_lpf1_rx_bypass	REG_9BH[8]	1=Audio LPF1 bypass for RX

(14) Receive speech de-emphasis

Register	Address(HEX)	Description
audio_emph_rx_bypass	REG_9BH[6]	1=DE-EMPHASIS bypass

(15) Receive speech despreading

See the "Voice Mode Settings" section of the documentation for details.

(16) Receive speech low-pass filter 2

Register	Address(HEX)	Description
Register	Address(HEX)	Description

audio_lpf2_rx_bypass	REG_9BH[7]	1=Audio LPF2 bypass for RX
----------------------	------------	----------------------------

(17) Receive DTMF/SELCALL input selection

Register	Address(HEX)	Description
dtmf_in_sel	REG_94H[5]	1=select gain out
		0=select audio rx out

DTMF/SELCALL receive signal selection, the difference lies in whether the signal entering DTMF/SELCALL decoding is de-emphasized. can be set according to

Choose according to your needs. Default dtmf_in_sel=1.

(18) Receive DTMF/SELCALL decoding

For details, see the "DTMF Mode Settings" and "SELCALL Mode Settings" sections of the document.

(19) Receive voice volume control

Register	Address(HEX)	Description
audio_rx_gain_sh [2:0]	REG_53H[15:13]	000=max,111=min
		0~-42dB, 6dB/step, digital gain
audio_rx_gain[4:0]	REG_53H[9:5]	0=mute,31=max
		1dB/step, digital gain
(20) AF DAC channel selection Same as the launch block diagram (17).		

(22) AF DAC analog gain

Same as the launch block diagram (18).

(23) Receive voice baseband mode selection

The received FM demodulated DISC signal is sent to the chip through MICIN for voice, sub-audio, DTMF, 5TONE and other decoding. in detail

See the "DISC Baseband Processing Mode Settings" section of the documentation.

Interface timing

Interface timing

3-WIRE interface

The format is as follows:

Tip: For 3-wire interface, when the read and write register address is greater than 0x7F, page flip operation is required. as follows:

Page0: WRITE(0x7F,0x0000); //default

Page1: WRITE(0x7F,0x0001);

2-WIRE interface

ÿÿÿÿ(Device Address ='0101110' when SCN is high(or no SCN pin), or Device Address =

'1110001'when SCN is low)ÿ

Reminder: 2-wire interface read and write registers do not need page turning operation, and "#define I2C 0x80".

Configuration process

Configuration process

1. Initialize settings

WRITE(0x00,0x8000); //soft reset

WRITE(0x00,0x0000);

...

2. Set the crystal/crystal clock frequency

See "Crystal/Crystal Clock Frequency Settings" section for instructions.

3. Set the frequency band

See the description in the section "Frequency, Frequency, Bandwidth Mode Settings".

4. Set the in-band frequency point

See the description in the section "Frequency, Frequency, Bandwidth Mode Settings"

5. Set up the AGC table

6. OFFSET calibration setting sequence

WRITE(0x03,0xBDF1); //Open the receiving channel, not open AF

WRITE(0x04,REG_04H & 0xFCFF);

WRITE(0x04,REG_04H | 0x0300); //bit[9:8] is the OFFSET calibration enable bit

delay_ms(50);

WRITE(0x03,0x0000); //Enter IDLE after calibration

Tip: Every time you change the frequency band, you need to set the frequency point in the frequency band first, and then do the OFFSET calibration again.

Configuration process

7. Set wide/narrowband, sub-audio and INBAND signal modes

8. Enter the receiving/transmitting state

Send and receive status settings

Send and receive status settings

Receive (RXON) settings

WRITE(0x03,0x0000);

WRITE(0x03,0xBFF1);

Transmit (TXON) Settings

WRITE(0x03,0x0000);

WRITE(0x03,0xC1FE);

launch with sidetone

WRITE(0x03,0x0000);

WRITE(0x03,0xC1FE | 1<<9); //Enable AF

No emission, only sidetone WRITE(0x03,0x0002 | 1<<9); //Enable AF

IDLE settings (can be used to save power)

WRITE(0x03,0x0000);

Tip: Power saving mode can be achieved by switching between RXON and IDLE.

Send and receive status settings

Attachment: register description

Register	Address(HEX)	Description
vco_cal_en	REG_03H[15]	1=Enable PLL Calibration, (0->1)
pabias_en	REG_03H[14]	1=Enable PABIAS Output
rxlink_en[3:0]	REG_03H[13:10]	1111=Enable Rx Link,
		(LNA,MIXER,FILTER,ADC)
error_en	REG_03H[9]	1=Enable AFOUT DAC
pll_en[4:0]	REG_03H[8:4]	11111=Enable PLL, VCO
padrv_en	REG_03H[3]	1=Enable PADRV
micin_en	REG_03H[2]	1=Enable MICIN ADC
thon	REG_03H[1]	1=Enable Tx DSP
rxon	REG_03H[0]	1=Enable Rx DSP

Band, frequency point, bandwidth mode settings

Band, frequency point, bandwidth mode settings

Transmit and receive frequency setting

For example, set the frequency to 409.75MHz, then DEC2HEX(409.75*100000)=0x2713A98

WRITE(0x38,0x3A98);

WRITE(0x39,0x0271);

Tip: After setting the frequency every time, you need to re-RXON or TXON, the frequency will be switched; the minimum frequency resolution is 10Hz.

Broadband (25KHZ) mode setting

WRITE(0x3A,0x00E0);

WRITE(0x43,0x3028);

Tip: You can choose the appropriate transmit and receive bandwidth, the above are only recommended val

Narrowband (12.5KHZ) mode setting

WRITE(0x3A,0x0040);

WRITE(0x43,0x4048);

Tip: You can choose the appropriate transmit and receive bandwidth, the above are only recommended values.

Attachment: register description

Register	Address(HEX)	Description
freq [15:0]	REG_38H[15:0]	Frequency
freq [31:16]	REG_39H[15:0]	=(REG_39H<<16 + REG_38H)*10 Hz
firlpf_bw[2:0]	REG_43H[14:12]	RF filter bandwidth (Apass=0.1dB)
		000 = 1.7 kHz
		001 = 2 kHz
		010 = 2.5 kHz
		011 = 3 kHz
		100 = 3.75 kHz
		101 = 4 kHz

Band, frequency point, bandwidth mode settings

		110 = 4.25 kHz
		111 = 4.5 kHz
		if wb=1, firlpf_bw *=2;
firlpf_bw_for_weak[2:0]	REG_43H[11:9]	RF filter bandwidth when signal is weak.
audio_lpf2_tx_sel[2:0]	REG_43H[8:6]	Audio LPF bandwidth (Apass=1dB) for Tx
		100 = 4.5 kHz
		101 = 4.25 kHz
		110 = 4 kHz
		111 = 3.75 kHz
		000 = 3 kHz
		001 = 2.5 kHz
		010 = 2 kHz
		011 = 1.7kHz
wb	REG_43H[5]	Rx filter band width mode select
		1=25khz/20khz wide band mode,
		0=12.5khz narrow band mode
Attachment: frequency band setting table		

BAND	REG_1AH	REG_40H 24M~26M	REG_40H 12M~13M	REG_40H 18M~20M
Band_740M_1120M	0x1f80	0x3ad0	0x37d0	0x373a
Band_370M_560M	0x2f50	0x39d0	0x38d0	0x383a
Band_247M_373M	0x9f30	0x385c	0x375c	0x38d7
Band_185M_280M	0x3f48	0x38d0	0x37d0	0x373a
Band_124M_186M	0xaf28	0x375c	0x365c	0x37d7
Band_93M_140M	0x4f44	0x37d0	0x36d0	0x363a
Band_62M_93M	0xbf24	0x365c	0x355c	0x36d7
Band_46M_70M	0x5f42	0x36d0	0x35d0	0x353a
Band_31M_46M	0xcf22	0x355c	0x345c	0x35d7
Band_23M_35M	0x6f41	0x35d0	0x34d0	0x343a
Band_16M_23M	0xdf21	0x345c	0x335c	0x34d7

Set modulation limits and MIC sensitivity

Set modulation limits and MIC sensitivity

When the chip is only used as a VCO, you can set dev_en=0 to turn off the FM modulation, so as to prevent the MICIN signal from affecting the local oscillator output.

The value of dev_sh is in a 2-fold decreasing relationship. For example, if dev_lvl is set to the same value, the modulation of dev_sh=7 is twice the modulation of dev_sh=8.

The suggested tuning sequence for modulation limit, MIC sensitivity and frequency response is:

1. Modulation limit (input a larger MICIN signal, such as 200mv, set dev_sh and dev_lvl to make the maximum modulation meet the design requirements)

2. Transmitting radio frequency (follow the setting instructions of transmitting radio frequency 300Hz and 3KHz to set accordingly. Because changing the frequency response will affect the MIC sensitivity, so

to be placed in front)

3. MIC sensitivity (Debug mic_sens_gain to make the MIC sensitivity meet the design requirements)

Tip: Different frequency band modulation registers (REG_40H) need to be set with different values. In addition, since it will affect the modulation size of the sub-audio, it is necessary to first After determining the value of REG_40H, adjust the sub-audio transmit gain (REG_51H).

Register	Address(HEX)	Description
dev_in	REG_40H[12]	Enable FM deviation
dev_sh[3:0]	REG_40H[11:8]	FM deviation coarse tuningÿ
		0000=max, 1111=min
dev_lvl[7:0]	REG_40H[7:0]	FM deviation fine tuning ÿ
		0000=min, 1111=max,
		GAIN=(256+dev_lvl[7:0])>>dev_sh[3:0]
mic_sens_gain[5:0]	REG_97H[13:8]	MIC sensitivity adjust gain 0-mute,
		63-max, 0.5dB/step

Attached: Modulation Limit and MIC Sensitivity Register

ÿ For example, the current dev_lvl=0xA3, the modulation size is 2.1kHz. If you want to modify the modulation to 2.2khz, then the calculation method is as follows:

dev_lvl= (0xA3+256)/2.1*2.2-256 ~=0xB7;

If the adjustment range is large, you need to modify dev_sh[3:0], which is a monotonically decreasing relationship of 2 times.

Set transmit power

Set transmit power

The transmit power is controlled by the registers padrv_gain and pa_gain_vreg, and the PA Bias can be output to control the external PA power.

Attachment: Transmit Power Register			
Register	Address(HEX)	Description	
pabias_in	REG_03H[14]	1=Enable PAbias output PAbias	
pabias_out[3:0]	REG_19H[3:0]	output 1.3~2.8V, 100mv/step 0000=1.3V 	
		1111=2.8V	
padrv_gain[2:0]	REG_28H[5:3]	111(max)->000(min)	
pa_gain_vreg[2:0]	REG_28H[2:0]	111(max)->000(min)	

Power (dB)				Padrv_ga	in[2:0] 100	7	<i>y</i> .	
Pa_gain_vreg[2:0]	111	110	101	011		010	001	000
111	8.33	7.96	7.53	7.11	6.62	5.69	4.12	1.59
110	7.96	7.11	6.62	6.19	5.69	4.68	2.16	-2.16
101	7.11	6.19	6.19	5.23	4.68	3.10	0.84	-5.54
100	6.40	5.69	5.23	4.68	3.44	2.16	-0.67	-8.61
011	5.70	4.68	4.12	3.44	2.16	0.85	-3.62	-12.78
010	4.10	3.44	2.16	1.59	0.15	-2.84	-8.2	-19.53
001	2.80	1.59	0.84	-0.67	-2.16	-5.5	-11.4	-22.65
000	1.60	0.84	-0.67	-2.16	-4.28	-8.2	-13.7	-24.00

Receive mute (MUTE) and volume settings

Receive mute (MUTE) and volume settings

To set mute:

WRITE(0x47,(REG_47H & 0xE0FF) | 0x1000);

To set receive AF output:

WRITE(0x47,(REG_47H & 0xF0FF) | 0x1100);

To set the transmit sidetone output:

WRITE(0x47,(REG_47H & 0xE0FF) | 0x1800);

Attachment: mute, mute off, BEEP sidetone selection register

Register	Address(HEX)	Description
afout_mode[4:0]	REG_47H[12:8]	0x10 = MUTE
		0x11 = RX AFOUT
		0x18 = BEEP/ TX Side ToneÿCTCSS/CDCSS
		is not includeÿ
		0x15 = RX ALARM TONE

Attachment: Receive volume register

Register	Address(HEX)	Description
audio_rx_gain_sh[2:0]	REG_53H[15:13]	000=max,111=min
		0~-42dB, 6dB/step, digital gain
audio_rx_gain[4:0]	REG_53H[9:5]	0=mute,31=max, 1dB/step, digital gain
dac_vgain[3:0]	REG_23H[3:0]	DAC maximum output level

Tip: You can use the registers audio_rx_gain_sh and audio_rx_gain to combine the volume control gear, while dac_vgain is fixed at a

Gear (generally fixed at the maximum gear).

Audio Response Adjustment

Audio Response Adjustment

low frequency audio response

Increase the transmit 300Hz amplitude:

WRITE(0x7F,0x0001); //page=1

WRITE(I2C | 0x30,0x8942);

WRITE(I2C | 0x31,0x3751);

WRITE(0x7F,0x0000); //page=0

Increase receive 300Hz amplitude:

WRITE(0x2C,0x8942);

WRITE(0x2D,0x3751);

high frequency audio response

Increase the transmit 3 KHz amplitude:

WRITE(0x7F,0x0001); //page=1

WRITE(I2C | 0x23,0xC1BB);

WRITE(I2C | 0x24,0x2226);

WRITE(0x7F,0x0000); //page=0

Increase the receive 3 KHz amplitude:

WRITE(0x7F,0x0001); //page=1

WRITE(I2C | 0x21,0xBBC0);

WRITE(I2C | 0x22,0x2616);

WRITE(0x7F,0x0000); //page=0

Voice Mode Settings

Voice Mode Settings

Attachment: Voice related registers

Register	Address(HEX)	Description
audio_emph_rx_bypass	REG_9BH[6]	DE-EMPHASIS bypass
audio_emph_tx_bypass	REG_9BH[0]	PRE-EMPHASIS bypass
audio_hpf_rx_bypass	REG_9BH[9]	Audio HPF 300Hz bypass for RX
audio_hpf_tx_bypass	REG_9BH[3]	Audio HPF 300Hz bypass for TX
audio_lpf1_rx_bypass	REG_9BH[8]	Audio LPF1 bypass for RX
audio_lpf1_tx_bypass	REG_9BH[2]	Audio LPF1 bypass for TX
audio_lpf2_rx_bypass	REG_9BH[7]	Audio LPF2 bypass for RX
audio_lpf2_tx_bypass	REG_9BH[1]	Audio LPF2 bypass for TX
cmpd_rx_factor[2:0]	REG_98H[14:12]	Expanding Factor.
		100=1:3;011=1:2.5;010=1:2;001=1:1.5
cmpd_rx_th_high[5:0]	REG_98H[11:6]	Above this amplitude point, audio will be
		expanded according to the expanding
		factor. The unit of this threshold is 2dB.
cmpd_rx_th_low[5:0]	REG_98H[5:0]	Under this amplitude point, audio will be
		attenuated. The unit of this threshold is 2dB.
cmpd_rx_gain[4:0]	REG_96H[7:3]	Audio CMPD Gain, 1dB/step
cmpd_rx_bypass[2:0]	REG_96H[2:0]	Audio Compander bypass for RX
		110=bypass with gain
		001=bypass without gain
		000=CMPD ON for RX
		Others=reserved
cmpd_tx_factor[2:0]	REG_99H[14:12]	Compressing Factor.
		111=8:1;110=4:1;100=2:1;000=1:1
cmpd_tx_th_high[5:0]	REG_99H[11:6]	Above this amplitude point, audio will be
		compressed according to the compressing
		factor. The unit of this threshold is 2dB.
cmpd_tx_th_low[5:0]	REG_99H[5:0]	Under this amplitude point, audio will be
		attenuated. The unit of this threshold is 2dB.
cmpd_tx_gain[4:0]	REG_97H[7:3]	Audio CMPD Gain, 1dB/step
cmpd_tx_bypass[2:0]	REG_97H[2:0]	Audio CMPD bypass for TX

Voice Mode Settings

		110=bypass with gain
		001=bypass without gain
		000=CMPD ON for TX
		Others=reserved
cmpd_ct_intvl[5:0]	REG_9AH[13:8]	Companding Amplitude Detect Interval,
		0.64ms/step
cmpd_atk_step[3:0]	REG_9AH[7:4]	Companding Gain Attack Speed.
		0000=most fast
		1111=most slow
cmpd_rls_step[3:0]	REG_9AH[3:0]	Companding Gain Release Speed.
		0000=most fast
		1111=most slow
cmpd_db_out[6:0]	REG_87H[6:0]	Audio amplitude output, 1dB/step. (Read
		Only)

Companding point setting method

Transmit companding point: add the micin signal amplitude to the companding point amplitude, read cmpd_db_out (REG_87H[6:0]), divide the resulting value by 2, set Go to cmpd_tx_th_high (REG_99H[11:6]).

Receive despreading point: Set the signal source modulation frequency offset to the companding point frequency offset, read cmpd_db_out (REG_87H[6:0]), divide the obtained value by 2, set

Set it to cmpd_rx_th_high (REG_98H[11:6]).

SCRAMBLE mode setting

SCRAMBLE mode setting

Attachment: Scrambling and frequency setting register

Register	Address(HEX)	Description
scramb_en	REG_04H[5]	Enable SCRAMBLER
scramb_freq[15:0]	REG_54H[15:0]	SCRAMBLE frequency control word =3.3(KHz)*2^26/6500 - The scrambler inversion mixing frequency should be kept between 2.6kHz and 3.5kHz

DTMF mode settings

DTMF mode settings

Attachment: DTMF/SELCALL Receive Register

Register	Address(HEX)	Description
dtmf_code_ready	REG_0BH[12]	1=DTMF/ SELCALL symbol received ready. (Read Only)
dtmf_code[3:0]	REG_0BH[11:8]	DTMF/ SELCALL symbol received. (Read Only)
dtmf_det_th[5:0]	REG_94H[12:7]	DTMF/ SELCALL detect threshold, 1dB/step
dtmf_symbol_mode	REG_94H[6]	DTMF/ SELCALL symbol mode
		1="symbol"+"idle"+"symbol"+ (DTMF)
		0="symbol"+"symbol"+"symbol"+(5TONE)
dtmf_in_sel	REG_94H[5]	1=select gain out
		0=select audio rx out
dtmf_mode	REG_94H[4]	Dual/Single Tone Detect mode
		1=dual tone
		0=single tone
dtmf_symbol_max[3:0]	REG_94H[3:0]	SELCALL maximum symbol number
		15=symbol "0"~"F" (DTMF)
		14=symbol "0"~"E" (THIS)

Standard DTMF Symbol Table

DTMF Symbol		High Frequency (Hz)			
		1209	1336	1477	1633
Low Frequency (Hz)	697	'1'	'2'	'3'	'A'
	770	'4'	'5'	'6'	'B'
	852	'7'	'8'	'9'	ΥĊ,
	941	'AND'	' 0'	'F'	ʻD'

Launch process:

1. Set transmit mute: WRITE(0x50,REG_50H | 0x8000);

DTMF mode settings

2. Set the frequency and gain of TONE1 and TONE2

3. Delay T1

4. Set the transmission on: WRITE(0x50,REG_50H);

5. After delay T2, if DTMF transmission continues to jump to 1, transmit the next DTMF symbol

0	TONE1+TONE2	0	TONE1+TONE2	
T1	T2	T1	T2	

Receiving process:

1. Wait for the interrupt, or read the dtmf_code_ready register until = 1

2. Read dtmf_code[3:0] to get the received DTMF symbol, if the reception is not over, jump to 1 and continue to wait for the next DTMF symbol

SELCALL mode setting

SELCALL mode setting

Launch process:

1. Set transmit mute: WRITE(0x50,REG_50H | 0x8000);

2. Delay T1

3. Set the launch to open: WRITE(0x50,REG_50H);

4. Set the frequency and gain of TONE1

5. After delay T2, if SELCALL transmission is not over, jump to 4 and transmit the next SELCALL symbol

0	TONE1	TONE1	TONE1	
T1	T2	T2	T2	

Receiving process:

1. Wait for the interrupt, or read the dtmf_code_ready register until = 1

2. Read dtmf_code[3:0] to get the received SELCALL symbol, if the reception is not over, jump to 1 and continue to wait for the next SELCALL symbol

1050HZ single tone decoding

1050Hz single tone decoding

Using DTMF for 1050 Hz alarm decoding, the configuration is as follows:

WRITE(0x04,0x0302);

WRITE(0x09,0x0002);

WRITE(0x09,0x105A);

WRITE(0x09,0x204B);

WRITE(0x09,0x3066);

WRITE(0x09,0x403B);

WRITE(0x07,0x1021);

WRITE(0x51,0x9400);

WRITE(0x52,0x1cb2);

WRITE(0x54,0x3269);

WRITE(0x7F,0x0001); //page1 for SPI

WRITE(0x11 | I2C,0x06FD);

WRITE(0x14 | I2C,0x8024 | 10<<7); //[12:8] decode threshold, change @2019.04.22

WRITE(0x7F,0x0000); //page0 for SPI

//polling REG_0B and REG_60,

//if REG_0B[12:8]==0x11 && REG_60[0]==1

//1050Hz is detectd.

FSK mode settings

FSK mode settings

FSK frame format 1 (fixed length)

This mode supports fixed-length data frame transmission, and CRC operation is optional.

Preamble	Sync Word	Data	CRC(opt)
1~16 bytes	2 or 4 bytes	Config (maximum 256 words)	2 bytes
		1 word = 2 bytes	

FSK frame format 2 (unlimited reception)

This mode supports the transmission of larger data. In this case, the length of the data packet is unknown, and the device will permanently import the data after the sync word into the FIFO. but not

CRC operation is supported because the corresponding device at the end of the data packet is unknown. This mode is more flexible and is suitable for user-defined frame structure and frame length.

Preamble	Sync Word	Data
1~16 bytes	2 or 4 bytes	Infinite Receive

TX and RX FIFO

The chip integrates two FIFOs of 64 words (=128 bytes), one for TX and one for RX (as shown in the figure below). by writing

REG_5FH register to write data to TX FIFO, read RX FIFO data by reading REG_5FH register. TX FIFO Yes

fsk_tx_fifo_ae_th[5:0] (TX FIFO Almost Empty) can be set to prompt data writing to TX FIFO by generating an interrupt;

RX FIFO has fsk_rx_fifo_af_th[5:0] (RX FIFO Almost Full) that can be set, and prompts to count the RX FIFO by generating an interrupt.

read. At the same time, TX FIFO and RX FIFO each have a clear register which can be used to clear or reset TX FIFO and RX FIFO.
FSK mode settings

Attachment: FSK setting register

Register	Address(HEX)	Description
fsk_en	REG_04H[4]	Enable FSK mode
fsk_rate[15:0]	REG_54H[15:0]	FSK/Scramble use the same rate register, =freq(kHz)*2^26/6500
fsk_crc_polyn[15:0]	REG_56H[15:0]	CRC polynomial coefficient, CCIT-16 is default
fsk_tx_fifo_clear	REG_59H[15]	Clear TX FIFO, 1=clear
fsk_rx_fifo_clear	REG_59H[14]	Clear RX FIFO, 1=clear
fsk_scramble_en	REG_59H[13]	1=Enable FSK Scramble
fsk_rx_en	REG_59H[12]	1=Enable FSK TX
fsk_tx_en	REG_59H[11]	1=Enable FSK RX
fsk_rx_data_inv	REG_59H[10]	1=invert FSK data after RX
fsk_tx_data_inv	REG_59H[9]	1=invert FSK data before TX
fsk_prmb_size[3:0]	REG_59H[7:4]	FSK preamble length select, length=(fsk_prmb_size[3:0]+1) bytes
fsk_sync_size	REG_59H[3]	FSK sync length select, 1=4 bytes (fsk_sync_byte0,1,2,3)

FSK mode settings

		0=2 bytes (fsk_sync_byte0,1)
fsk_sync_byte0[7:0]	REG_5AH[15:8]	FSK sync byte0
fsk_sync_byte1[7:0]	REG_5AH[7:0]	FSK sync byte1
fsk_sync_byte2[7:0]	REG_5BH[15:8]	FSK sync byte2
fsk_sync_byte3[7:0]	REG_5BH[7:0]	FSK sync byte3
fsk_tx_type_byte[7:0]	REG_5CH[7:0]	FSK type byte to be transmitted. "0x01"=FSK Format2 "0x21"=FSK Format1 without CRC "0x61"=FSK Format1 with CRC
fsk_length[7:0]	REG_5DH[15:8]	FSK data length when use FSK format1 length=(fsk_length[7:0]+1) words (1 word = 2 bytes)
fsk_tx_fifo_ae_th [5: 0]	REG_5EH[11:6]	FSK TX FIFO almost empty threshold(unit is 1word=2 bytes)
fsk_rx_fifo_af_th[5:0]	REG_5EH[5:0]	FSK RX FIFO almost full threshold(unit is 1word=2 bytes)
fsk_data[15:0]	REG_5FH[15:0]	TX/RX FIFO Data

Launch process:

- 1. Clear TX FIFO, then write data to TX FIFO
- 2. Transmit TXON

3. Wait for the interrupt to prompt the completion of the FSK transmission

4. End transmitting IDLE

Receiving process:

1. Receive RXON

2. Wait for the interrupt prompt to receive completion

3. Read the RX FIFO data and read the $\mathsf{fsk_crc_ok}$ flag for error control

4. End receiving IDLE, (delay for a certain interval time) RXON again and wait for the arrival of the next FSK frame

DISC baseband processing mode setting

DISC baseband processing mode setting

WRITE(0x03,0x0000); WRITE(0x03,0xC1FE); // directly modulate to RFO and transmit

2. Do voice and sub-audio receiving and decoding (the input signal amplitude of MICIN needs to be controlled below 200mV), and also used as VCO. set as

WRITE(0x13,0x03FF);

Do

WRITE(0x35,0xF108);

WRITE(0x3C,REG_3CH & 0xFFC0);

WRITE(0x3D,0x0000);

DISC baseband processing mode setting

WRITE(0x44,0x53EC | 0x1); //[0] DISC mode enable

WRITE(0x7E,0x341E | 3<<6); //DCC bypass

WRITE(0x7F,0x0001); //page1

WRITE(I2C | 0x1C,0x076F);

WRITE(I2C | 0x1D,0xB9FD);

WRITE(I2C | 0x27,0x18DA);

WRITE(0x7F,0x0000); //page0

RXON:

WRITE(0x04,0x0800);

WRITE(0x03,0x0000); WRITE(0x03,0x81FD); //RFO outputs VCO, AF outputs audio, and sub-audio decoding is done internally

TXT:

WRITE(0x03,0x0000); WRITE(0x03,0x0006 | 1<<9); //Only transmit audio filter, output from AF

or

WRITE(0x04,0x0400);

WRITE(0x03,0x0000); WRITE(0x03,0xC1FE)//normally modulate and transmit from RFO

BYPASS mode setting (for DMR/DPMR)

BYPASS mode setting (for DMR/dPMR)

This mode can be used as a transceiver for DMR/dPMR and other products. MICIN sends the shaped filtered 4FSK signal for modulation and transmission, and AFOUT sends out
The adjusted 4FSK signal. The settings are as follows (the chip should be set to narrowband 12.5k mode):
WRITE(0x04,0x0300);
WRITE(0x3a,0x0040); // 12.5k
WRITE(0x43,0x7e00); -> WRITE(0x43,0x7e08); // Set DMR bandwidth bit14:12
WRITE(0x48,0x6c5c); // cic mode
WRITE(0x4b,0xe442); // cic mode
WRITE(0x73,0x569a); //Close AFC
WRITE(0x7E,0x341E 1<<7); //dcc_tx_bypass=1
If the transmission is realized by adjusting the external TCXO, it is also necessary to set
WRITE(0x40,0x0000); //Turn off internal modulation
In addition to the above settings, the transceiver control
TXON changed to
WRITE(0x47,0x6740); //Transmit directly after MIC ADC
WRITE(0x03,0x0000);
WRITE(0x03,0xC1FE);

RXON changed to

WRITE(0x47,0x6140); //Send AFOUT directly after FM demodulation

WRITE(0x03,0x0000);

WRITE(0x03,0xC1FE); ->WRITE(0x03,0xBFF1);

VCO Mode Settings

VCO Mode Settings

Both receive and transmit are used as VCO

1. Modify the corresponding registers in the initialization

WRITE(0x34,0x606F); WRITE(0x35,0xF608); //Turn off the corresponding clock to reduce VCO interference

WRITE(0x40,0x0000); //Turn off modulation

2. Both TXON and RXON are used

WRITE(0x03,0x0000);

WRITE(0x03,0x01FA); WRITE(0x03,0x81FA);

3. Modify the transceiver frequency band according to your needs

Receive only for VCO use, transmit link is used normally

1. Modify the corresponding registers in the initialization

WRITE(0x34,0x206F); //Turn off the receiving part of the clock to reduce VCO interference

2. TXON is

WRITE(0x03,0x0000);

WRITE(0x40,???); //The value of normal modulation

WRITE(0x03,0xC1FE);

3. RXON is

WRITE(0x03,0x0000);

WRITE(0x40,0x0000); //Turn off modulation

WRITE(0x03,0x01FA); WRITE(0x03,0x81FA);

4. Modify the transceiver frequency band according to your needs

Key tone side tone BEEP and other settings

Key tone side tone BEEP and other settings

Key tone side tone on:

WRITE(0x03,0x0202); //enable AF and Tx(PLL and PA are not include)

WRITE(0x47,(REG_47H & 0xE0FF) | 0x1800);

The BEEP and CALL TONE frequencies of touch tone side tone are set by registers REG_71H, REG_72H:

Dual tone settings tone1_gen=1, tone2_gen=1

Mono set tone1_gen=1

The transmission frequency is freq(Hz), and the calculation formula is =freq(kHz)* 2^26/6500

To transmit CALL TONE and play sidetone at the same time, you need to set AFOUT(REG_03[9])=1, and set

WRITE(0x47,(REG_47H & 0xE0FF) | 0x1800);

To launch a MUTE:

WRITE(0x50,REG_50H | 0x8000);

Emit NOMUTE:

WRITE(0x50,REG_50H);

Receive alarm tone (TONE2)

WRITE(0x47,(REG_47H & 0xE0FF) | 0x1500);

Attachment: AFOUT sidetone control register

Register	Address(HEX)	Description
afout_mode[4:0]	REG_47H[12:8]	0x10 = MUTE
		0x11 = RX AFOUT
		0x18 = BEEP/TX Side ToneÿCTCSS/CDCSS
		is not includeÿ

Key tone side tone BEEP and other settings

0x15 = RX ALARM TON	E
---------------------	---

Attachment: TONE1, TONE2 setting register

Register	Address(HEX)	Description
tone1_gen	REG_70H[15]	Enable TONE1
tone1_gain[6:0]	REG_70H[14:8]	TONE1 tuning gain
tone2_gen	REG_70H[7]	Enable TONE2
tone2_gain[6:0]	REG_70H[6:0]	TONE2 tuning gain
tone1_freq[15:0]	REG_71H[15:0]	TONE1 frequency. control word
		=freq(kHz)* 2^26/6500
tone2_freq[15:0]	REG_72H[15:0]	TONE2 frequency. control word
		=freq(kHz)* 2^26/6500

Sub audio settings

Turn off subaudio:

WRITE(0x51,0x0000);

To set up CTCSS transmit and receive:

WRITE(0x51,0x90C5); //[6:0] Gain

WRITE(0x07,0x0811); //100Hz

WRITE(0x07,0x0470 | 1<<13); //55Hz tail

Set up CDCSS transmit and receive:

WRITE(0x51,0x80B0); //[6:0] Gain

WRITE(0x07,0x0AD7); //134.4Hz DCS rate

WRITE(0x07,0x0AD7 | 1<<13); //134.4Hz CTCSS tail

WRITE(0x08,0x0813); //set '023' low 12-bit

WRITE(0x08,0x0763 | 1<<15); //set '023' high 12-bit

Attachment: Sub-audio setting register

Register	Address(HEX)	Description
subau_en	REG_51H[15]	1=Enable CTCSS/CDCSS
dcs_invert	REG_51H[13]	1=Transmit negative CDCSS code
		0=Transmit positive CDCSS code
ctc_dcs_sel	REG_51H[12]	CTCSS/CDCSS mode select,
		1=CTCSS, 0=CDCSS
dcs_24b_mode	REG_51H[11]	24/23bit CDCSS select,

		1=24bit, 0=23bit
subau_gain[6:0]	REG_51H[6:0]	Gain ÿ =
		(1+subau_gain[4:0]/32)< <subau_gain[6:5]< td=""></subau_gain[6:5]<>
		[6:5]: CTCSS/CDCSS coarse tuning gain
		[4:0]: CTCSS/CDCSS fine tuning gain
ctc_freq[15:0]	REG_07H[15:0]	[13]=1 for CTCSS1/CDCSS
		[13]=0 for CTCSS0/CDCSS
		[12:0]: CTCSS frequency control word =
		freq(Hz)*2^27/6500000 [15]=1 for CDCSS
dcs_code[15:0]	REG_08H[15:0]	high 12bit
		[15]=0 for CDCSS low 12bit
		[11:0] CDCSS 23/24bit code
subau_rx_dcc_bw[2:0]	REG_B6H[12:10]	CTC/DCS-Rx HPF Bw-
		000=bypass;001=60Hz;010=30Hz;011=15Hz;
		100=8Hz;101=4Hz;110=2Hz;111=1Hz
subau_tx_atten_gain[1:0]	REG_B6H[9:8]	CTC/DCS Tx Atten Gain ÿ, -6dB/step
subau_rx_gain1[1:0]	REG_B6H[7:6]	CTC/DCS Rx Gain1 ÿ, -6dB/step
subau_rx_gain2[1:0]	REG_B6H[5:4]	CTC/DCS Rx Gain2 ÿ, -6dB/step
subau_rx_gain3[3:0]	REG_B6H[3:0]	CTC/DCS Rx Gain3 ÿ, -6dB/step

ÿÿ Sub-audio transmit gain can be adjusted in addition to subau_gain[6:0] and subau_tx_atten_gain[1:0]. Another thing to note Yes, the sub-audio transmission modulation frequency offset is associated with the REG_40H register, so you must first determine the value of REG_40H (that is, the maximum modulation) and then adjust it subau_gain[6:0] plus subau_tx_atten_gain[1:0].

ÿ The sub-audio receiving gain is subau_rx_gain1[1:0], subau_rx_gain2[1:0], subau_rx_gain3[3:0] in order. if needed Adjustments should be prioritized from the first level.

254Hz Low Pass Filer

Attachment: CTCSS/CDCSS tail sound generation register

Register	Address(HEX)	Description
subau_tail_gen	REG_52H[15]	sub-audio tail generate
		0=normal, 1=tail generate
ctc_tail_offs[1:0]	REG_52H[14:13]	CTCSS tail mode and phase change select,
		00=No phase shiftÿgenerate CTCSS1ÿ
		01=CTCSS0 120°phase shift,
		10= CTCSS0 180°phase shift
		11= CTCSS0 240°phase shift
		CTCSS Phase Decode is not supported.

When transmitting CTCSS, set subau_tail_gen=1, if ctc_tail_offs=0, CTCSS1 will be automatically transmitted as tail tone; if

If ctc_tail_offs is other value, it will automatically transmit CTCSS0 with corresponding phase shift as tail tone.

When transmitting CDCSS, after setting subau_tail_gen=1, CTCSS1 is automatically transmitted as tail tone.

Register	Address(HEX)	Description
ctc_th_mode	REG_52H[12]	ctcss detect threshold mode,
		1=~0.1%; 0=0.1 Hz
ctc_th_in[5:0]	REG_52H[11:6]	CTCSS found detect threshold
ctc_th_out[5:0]	REG_52H[5:0]	CTCSS lost detect threshold
dcs_detect[1:0]	REG_60H[11:10]	[0]:CDCSS positive code received
CN		[1]:CDCSS negative code received
		(Read Only)
ctc_detect[1:0]	REG_60H[1:0]	[1]:CTCSS1 received
		[0]:CTCSS0 received
		(Read Only)

Attachment: Sub-audio detection register

There are two modes for CTCSS detection threshold, 1 is frequency percentage (unit is ~0.1%) mode, 0 is frequency (unit is 0.1Hz) mode (default).

//When mode=0, the unit corresponding to ctc_th_in/ ctc_th_out is about 0.1Hz

//When mode=1, the unit corresponding to ctc_th_in/ ctc_th_out is about 0.1%

//When mode=0, if ctc_th_in/ ctc_th_out=15, then the corresponding threshold is about 15*0.1=1.5hz

//mode=1, if ctc_th_in/ ctc_th_out=10, then when the solution is 67hz, the corresponding threshold is 10*67*0.1%=0.67hz

The sub-audio can be detected by reading the values of dcs_detect and ctc_detect regularly, or it can be obtained by interrupt.

Voice control (VOX), transmit timeout (TOT) settings

Voice control (VOX), transmit timeout (TOT) settings

The judgment of voice control (VOX) adopts a double threshold algorithm, and its judgment logic is as follows:

if (vox_amp > vox_amp_th_in)

VOX = 1;

else

if (vox_amp < vox_amp_th_out) && delay_out

VOX = 0;

Attachment: VOX related registers

Register	Address(HEX)	Description
vox_en	REG_04H[2]	Enable VOX detection
vox_delay[3:0]	REG_7AH[15:12]	VOX=0 delay, *128ms
vox_rssi_th [5:0]	RÈG_46H[15:10]	RSSI threshold (2dB/step) for VOX. VOX works only when RSSI is lower than this threshold.
vox_amp_th_in[9:0]	REG_46H[9:0]	voice amp threshold for VOX=1 detect voice
vox_amp_th_out[9:0]	REG_79H[9:0]	amp threshold for VOX=0 detect voice amp
vox_amp[9:0]	REG_64H[9:0]	out. (Read Only)
vox_out	REG_0CH[2]	VOX result output. (Read Only)
to_and	REG_04H[6]	Enable TOT detection
tot_timer[7:0]	REG_31H[7:0]	tot timer, *327ms

Squelch (SQ) settings and RSSI, NOISE and SNR

Squelch (SQ) settings and RSSI, NOISE and SNR

The squelch judgment adopts the double threshold algorithm of rssi_sq and noise_sq, and its judgment logic is as follows:

if (rssi_sq > rssi_sq_th_in && noise_sq < noise_sq_th_in)

SQ = 1;

else

if (rssi_sq < rssi_sq_th_out || noise_sq > noise_sq_th_out)

SQ = 0;

Different squelch levels are distinguished by the threshold of rssi_sq. The threshold of noise_sq can be set to a fixed value, so that the squelch table is relatively simple.

Tip: Different schemes may have external LNAs with different gains. In order to normalize RSSI, the ext_Ina_gain register is set to compensate. If the external LNA gain is 10dB, then you need to set ext_Ina_gain=10.

Register	Address(HEX)	Description
rssi_sq_th_in[7:0]	REG_78H[15:8]	RSSI threshold for SQ=1, 0.5dB/step
rssi_sq_th_out[7:0]	REG_78H[7:0]	RSSI threshold for SQ=0, 0.5dB/step
noise_sq_th_out[6:0]	REG_4FH[14:8]	noise threshold for SQ=0
noise_sq_th_in[6:0]	REG_4FH[6:0]	noise threshold for SQ=1
ext_Ina_gain[4:0]	REG_2CH[4:0]	External LNA gain RSSI, 1dB/step
rssi_sq[8:0]	REG_67H[8:0]	0.5dB/step, RSSI (dB) = rssi_sq/2 - 160.
		(Read Only)
snr_out[7:0]	REG_61H[15:8]	SNR indicator, dB/step. (Read Only)
rssi_rel[7:0]	REG_65H[15:8]	RSSI relative, dB/step. (Read Only)
noise_sq[7:0]	REG_65H[7:0]	NOISE indicator, dB/step. (Read Only)
sq_out	REG_0CH[1]	SQ result output. (Read Only)
weak_rssi	REG_0CH[7]	1=signal is too weak. (Read Only)

Attachment: SQ related registers

47 | 75

SOFT MUTE settings

SOFT MUTE settings

Attachment: SOFT MUTE register

Register	Address(HEX)	Description
soft_mute_en	REG_90H[12]	1=Enable Soft Mute
soft_mute_atten[1:0]	REG_90H[9:8]	Soft Mute Atten Level
		00=-16dB; 01=-12dB; 10=-8dB; 11=-4dB
soft_mute_rate[1:0]	REG_90H[7:6]	Soft Mute Rate (SNR/GAIN)
		00=1/4; 01=1/2; 10=1; 11=2
snr_th_for_sm[5:0]	REG_90H[5:0]	SNR Threshold for Soft Mute. If SNR little
		than this value, Soft Mute begin.
snr_out[7:0]	REG_61H[15:8]	SNR indicator, dB/step. (Read Only)

When snr< snr_th_for_sm && weak_rssi && soft_mute_en, the soft_mute function is enabled inside the chip. This function has

It is beneficial to reduce the received audio noise floor under weak signals.

AFC settings

AFC settings

If the temperature compensated crystal oscillator TCXO is used, the frequency is relatively accurate, and the AFC function can be turned off (set afc_disable=1); if the crystal is used, There is still a certain deviation after frequency calibration, you can turn on AFC (set afc_disable=0) and set a suitable afc_range.

Attachment: AFC register

Register	Address(HEX)	Description
afc_range[2:0]	RegW_73H[13:11] AF	C Range:
		000: ~=2.2 kHz
		001: ~=1.5 kHz
		010: ~=1.1 kHz
		011: ~=750 Hz
		100: ~=550 Hz
		101: ~=375 Hz
		110: ~=275 Hz
		111: ~=188 Hz
		if wb, afc range*=2
afc_disable	RegW_73H[4]	1=disable AFC
afc_rail	RegW_0CH[8]	0 = AFC not railed
		1 = AFC railed
		(Read Only)

GPIO, interrupt settings

Attachment: INTERRUPT related registers

Register	Address(HEX)	Description		
int_out	REG_0CH[0]	Interrupt output		
irq_mask[15:0]	REG_3FH[15:0]	[15]: Enable FSK Tx finished interrupt		
		[14]: Enable FSK FIFO almost empty interrupt		
		[13]: Enable FSK Rx succeed interrupt		
		[12]: Enable FSK FIFO almost full interrupt		
		[11]: Enable FSK Header received interrupt		
		[10]: Enable FSK SyncP succeed interrupt		
		[9]: Enable FSK SyncN succeed interrupt		
		[8]: Enable DTMF/SELCALL code received		
		interrupt		
		[7]: Enable PLL lock lost interrupt		
		[6]: Enable CDCSS receive/lost interrupt		
		[5]: Enable CTCSS receive/lost interrupt		
		[4:3]: reserved		
		[2]: Enable TOT time out interrupt		
		[1]: Enable VOX receive/lost interrupt		
		[0]: Enable SQ receive/lost interrupt		
irq_vector[15:0]	REG_02H[15:12]	dtmf/selcall code index[3:0]		
	REG_02H[11:10] 10=	0=CDCSS positive code receive		
		11=CDCSS negative code receive		
		00=CDCSS positive code lost		
	7	01=CDCSS negative code lost		
	REG_02H[9:8]	reserved		
	REG_02H[7:6]	10=CTCSS0 receive interrupt		
		00=CTCSS0 lost interrupt		
		11=CTCSS1 receive interrupt		
		01=CTCSS1 lost interrupt		
	REG_02H[5]	0=VOX lost		
		1=VOX receive		
	REG_02H[4]	0=SQ lost		

	1=SQ receive
REG_02H[3:0]	15=FSK Tx Finished
	14=FSK FIFO(almost empty) need to WRITE
	13=FSK Rx Succeed
	12=FSK FIFO(almost full) need to read
	11=FSK Header received interrupt
	10=FSK SyncP found interrupt
	9=FSK SyncN found interrupt
	8=DTMF/SELCALL receive interrupt
	7=PLL lock lost interrupt
	6=CDCSS receive/lost interrupt
	5=CTCSS receive/lost interrupt
	4,3=reserved
	2=TOT time out interrupt
	1=VOX receive/lost interrupt
	0=SQ receive/lost interrupt

The interrupt can be output by any GPIO port of the chip, and the interrupt can be cleared by writing any value to the 02H register, such as

WRITE (0x02,0x0000); //clear interrupt

Tip: Interrupt is active at high level. When getting an interrupt, you must clear the interrupt before reading the interrupt vector table. Read the vector table, first according to

irq_vector[3:0] to judge the interrupt source, and then find the specific interrupt event in the interrupt source. The processing is as follows:

int rdata = 0;

if (PIN_INT) { // MCU reads the chip's interrupt output PIN_INT

WRITE(0x02,0x0000);

Read(0x02,rdata);

switch (rdata & 0xF) {

case 0: SQ = (rdata >> 4) & 1; break;

case 1: VOX = (rdata >> 5) & 1; break;

case 2: break; //TOT emission timeout

case 3: break; //reserved

case 5:

```
switch ((rdata >> 6) & 1) {
```

case 0: CTC0 = (rdata >> 7) & 1; break;

case 1: CTC1 = (rdata >> 7) & 1; break;

case 6:

```
switch ((rdata >>10) & 1) {
```

case 0: DCSP = (rdata >> 11) & 1; break; //DCS ÿÿ

case 1: DCSN = (rdata >> 11) & 1; break; //DCS ÿÿ

case 7: break; //The PLL is out of lock and the PLL can be retriggered by first in the receive or transmit state

REG_03H[15]=0 and then REG_03H[15]=1

case 8: CODE = (rdata >>12) & 0xf; break; //DTMF or SELCALL CODE

case 9: break; //FSK SyncN Found

case 10: break; //FSK SyncP Found

case 11: break; //FSK Header Found

case 12: break; //Read Data from FIFO

case 13: break; //FSK Rx Succeed

case 14: break; //WRITE Data to FIFO

case 15: break; //FSK Tx Finished

} //end switch

} //end if

Attachment: GPIO register settings

Register	Address(HEX)	Description
gpio_oen_b[7:0]	REG_25H[15:8]	gpioX output enable, low active, (X=07)
gpio_out_val[7:0]	REG_25H[7:0]	gpioX output value when
		gpioX_out_sel=0, (X=07)
gpio7_out_sel[3:0]	REG_27H[15:12] gpic	o7 ouput select.
		0=gpio_out_val[X], (X=07)
		1=INT
		2=SQ
		3=VOX
		4=subau_cmp (CTCSS/CDCSS compare result
		output)
		5=CTCSS/CDCSS code output for software
		decode
		6=SDO for 4-wire mode
		7:11=reserved
		12=I2S/MCBSP DOUT output
		13=I2S/MCBSP DFS output
		14=I2S/MCBSP DCLK output
		45=XTAL CLK div2 output
gpio6_out_sel[3:0]	REG_27H[11:8]	Description is the same as gpio7_out_sel[3:0]
gpio5_out_sel[3:0]	REG_27H[7:4]	Description is the same as gpio7_out_sel[3:0]
gpio4_out_sel[3:0]	REG_27H[3:0]	Description is the same as gpio7_out_sel[3:0]
gpio3_out_sel[3:0]	REG_26H[15:12]	Description is the same as gpio7_out_sel[3:0]
gpio2_out_sel[3:0]	REG_26H[11:8]	Description is the same as gpio7_out_sel[3:0]
gpio1_out_sel[3:0]	REG_26H[7:4]	Description is the same as gpio7_out_sel[3:0]
gpio0_out_sel[3:0]	REG_26H[3:0]	Description is the same as gpio7_out_sel[3:0]
gpio_in_val[7:0]	REG_28H[15:8]	gpioX input value, (X=07). (Read Only)

Tips: GPIO0~GPIO7 are all pull-down.

For example: use GPIO4 as SQ output, use GPIO5 as VOX output, you need to set

gpio_oen_b[4]=0, gpio4_out_sel[3:0]=2;

gpio_oen_b[5]=0, gpio5_out_sel[3:0]=3;

For example: use GPIO4 as variable output, you need to set

gpio_oen_b[4]=0, gpio4_out_sel[3:0]=0, the output value of GPIO4 is the value corresponding to gpio_out_val[4].

For example: use GPIO5 as input, you need to set

gpio_oen_b[5]=1, the read value of gpio_in_val[5] is the input value of GPIO5.

Crystal/Crystal Clock Frequency Setting

Crystal/Crystal Clock Frequency Setting

XTAL is the clock frequency (unit Hz), then N=XTAL/10*2, the clock frequency of the crystal/crystal oscillator is set as follows:

WRITE(0x3B,N);

WRITE(0x3C,(N>>16)<<8);

Except for the clock frequency, if the clock frequency is in the range of 12M~13M, you need to set:

WRITE(0x22,0x9E14);

WRITE(0x41,0x81C1);

WRITE(0x3D,0x4EC5);

If the clock frequency is in the range of 18M~20M, you need to set:

WRITE(0x22,0x5E14);

WRITE(0x41,0x81C2);

WRITE(0x3D,0x3483);

If the clock frequency is in the range of 24M~26M, you need to set: (default 26MHz, you can not set it)

WRITE(0x22,0x3E14);

WRITE(0x41,0x81C4);

WRITE(0x3D,0x2762);

Address R/W	Default		Description		
REG_00H	R	0x6818 chip	_id[15:0] 0x0000	[15:0]	Chip identification code
REG_01H	R	revision_id[15:0]	[15:0]	Revision identification code
REG_02H	R		irq_vector[15:0]	[15:12] dtm	nf/selcall code index[3:0]
	REG_02H R irq_vector[15:0]	[11:10] 10= [9:8] [7:6]	CDCSS positive code receive 11=CDCSS negative code receive 00=CDCSS positive code lost 01=CDCSS negative code lost reserved 10=CTCSS0 receive interrupt		
					00=CTCSS0 lost interrupt 11=CTCSS1 receive interrupt 01=CTCSS1 lost interrupt
				[5]	0=VOX lost 1=VOX receive
				[4]	0=SQ lost 1=SQ receive
C	C C			[3:0]	15=FSK Tx Finished 14=FSK FIFO(almost empty) need to WRITE 13=FSK Rx Succeed 12=FSK FIFO(almost full) need to read
	D				11=FSK Header received interrupt 10=FSK SyncP found interrupt 9=FSK SyncN found interrupt 8=PLL lock lost interrupt 6=CDCSS receive/lost interrupt

			5=CTCSS receive/lost
			interrupt
			4=DTMF/SELCALL receive
			interrupt
			3=reserved
			2=TOT time out interrupt
			1=VOX receive/lost interrupt
			0=SQ receive/lost interrupt
REG_03H R/W 0x0000 vco_cal_en		[15]	0->1=Enable PLL Calibration
	pabias_in	[14]	1=Enable PABIAS
	rxlink_en[3:0]	[13:10] 11	11=Enable Rx Link,
			(LNA,MIXER,FILTER,ADC)
	aerror_en	[9]	1=Enable AFOUT DAC
	pll_en[4:0]	[8:4]	11111=Enable PLL, VCO
	padrv_en	[3]	1=Enable PADRV
	micin_en	[2]	1=Enable MICIN ADC
	thon	[1]	1=Enable Tx DSP
	rxon	[0]	1=Enable Rx DSP
REG_04H R/W 0x0000 reserved		[15:10] Re	served
	adc_cal_en	[9]	0->1=Enable ADC calibration
	offset_cal_in	[8]	0->1=Enable offset calibration
	pkd_disable	[7]	1=Disable Peak Detection
	to_and	[6]	1=Enable TOT detection
	scramb_en	[5]	1=Enable SCRAMBLER
	fsk_en	[4]	1=Enable FSK mode
	amdem_en	[3]	1=Enable AM Demodulation
	vox_en	[2]	1=Enable VOX detection
	dtmf_en	[1]	1=Enable DTMF/SELCALL
	mcbsp_en	[0]	1=Enable MCBSP/I2S module
REG_07H W	ctc_freq[15:0]	[15:0]	[13]=1 for CTCSS1/CDCSS
			[13]=0 for CTCSS0/CDCSS
			[12:0]: CTCSS frequency control word
			= freq(Hz)*2^27/6500000

REG_08H W			dcs_code[15:0]	[15:0]	[15]=1 for CDCSS high 12bit
					[15]=0 for CDCSS low 12bit
					[11:0] CDCSS 23/24bit code
REG_09H W			dtmf_coef [15:0]	[15:0]	[15:12]=coefficient index
					[7:0]=coefficients for
					DTMF/SELCALL detection
REG_0BH	R		reserved	[15:13] Res	served
			dtmf_code_ready	[12]	1=DTMF/ SELCALL symbol
					received ready.
			dtmf_code[3:0]	[11:8] DTM	F/ SELCALL symbol received.
			reserved	[7:0]	Reserved
REG_0CH	R		reserved	[15:10] Res	served
			pll_lock	[9]	1=pll lock
					0=pll lock lost
			afc_rail	[8]	0 = AFC not railed
					1 = AFC railed
			weak_rssi	[7]	1=signal is too weak.
			reserved	[6:4]	Reserved
			until_out	[3]	TOT output
			vox_out	[2]	VOX result output.
			sq_out	[1]	SQ result output.
			int_out	[0]	Interrupt output
REG_18H R/W	0x4125 m	ic_pga_gain[4:	0]	[15:11] 100	00 max
					01000(default)
					00100
					00010
					00001 min
			reserved	[10:0]	Reserved
REG_19H R/W	0x900F re	served		[15:4]	Reserved
			pabias_out[3:0]	[3:0]	PAbias output 1.3~2.8V, 100mv/
					step
					0000=1.3V
					1111=2.8V

REG_23H R/W 0x8F8F reserved		[15:4]	Reserved
	dac_vgain[3:0]	[3:0]	DAC maximum output level
REG_24H R/W 0x603F reserved		[15:12] Re	served
	mcbsp_clks_in_sel[2:0]	[11:9]	Select GPIOx as I2S/MCBSP
			DCLKS input (x=07)
	mcbsp_clk_in_sel[2:0]	[8:6]	Select GPIOx as I2S/MCBSP
			DCLK input (x=07)
	mcbsp_fs_in_sel[2:0]	[5:3]	Select GPIOx as I2S/MCBSP
			DFS input (x=07)
	mcbsp_dr_in_sel[2:0]	[2:0]	Select GPIOx as I2S/MCBSP
			DIN input (x=07)
REG_25H R/W 0x0000 gpio_oen_b[7:0]	[15:8] gpi	oX output enable, low active,
			(X=07)
	gpio_out_val[7:0]	[7:0]	gpioX output value when
			gpioX_out_sel=0, (X=07)
REG_26H R/W 0x0005 gpio3_out_s	el[3:0]	[15:12] G	pio3 output select.
			0=gpio_out_val[X], (X=07)
			1=INT
			2=SQ
			3=VOX
			4=subau_cmp (CTCSS/CDCSS
			compare result output)
			5=CTCSS/CDCSS code output for
			Software decode
			5=SDO for 4-wire mode
			7:11=reserved
			12=I2S/MCBSP DOUT output
			13=I2S/MCBSP DFS output
			14=I2S/MCBSP DCLK output
			15=XTAL CLK div2 output
	gpio2_out_sel[3:0]	[11:8]	Description is the same as
		F7 47	gpio3_out_sei[3:0]
	gpio1_out_sel[3:0]	[7:4]	Description is the same as
		[0.0]	gpios_out_sei[s:v]
	gpio0_out_sel[3:0]	[3:0]	Description is the same as

			gpio3_out_sel[3:0]
REG_27H R/W 0x3200 gpio7_out_se	al[3:0]	[15:12] De	scription is the same as
			gpio3_out_sel[3:0]
	gpio6_out_sel[3:0]	[11:8]	Description is the same as
			gpio3_out_sel[3:0]
	gpio5_out_sel[3:0]	[7:4]	Description is the same as
			gpio3_out_sel[3:0]
	gpio4_out_sel[3:0]	[3:0]	Description is the same as
			gpio3_out_sel[3:0] gpioX input
REG_28H R/W 0x003F gpio_in_val[7	7:0]	[15:8]	value, (X=07).
			(Read Only)
	reserved	[7:6]	Reserved
	padrv_gain[2:0]	[5:3]	PA output gain
	pa_gain_vreg[2:0]	[2:0]	PA output gain
REG_38H R/W 0x3A98 freq [15:0]		[15:0]	Frequency
REG_39H R/W 0x0271 freq [31:16]		[15:0]	=(REG_39H<<16 +
			REG_38H)*10 Hz
REG_3BH R/W 0x3D62 xtal_freq [15	:0]	[15:0] XTA	L Frequency
REG_3CH R/W 0x1000 xtal_freq [23:	16]	[15:8]	=((REG_3CH>>8)<<16 +
			REG_3BH)*5 Hz
	reserved	[7:0]	Reserved.
REG_3FH R/W 0x0000 irq_mask[15:	0]	[15:0]	[15]: Enable FSK Tx finished
			interrupt
			[14]: Enable FSK FIFO almost
			empty interrupt
			[13]: Enable FSK Rx succeed
			interrupt
			[12]: Enable FSK FIFO almost
			full interrupt
			[11]: Enable FSK Header
			received interrupt
			[10]: Enable FSK SyncP succeed
			interrupt
			[9]: Enable FSK SyncN succeed
			interrupt
			[8]: Enable DTMF/SELCALL

			code received interrupt
			[7]: Enable PLL lock lost
			[6]: Enable CDCSS receive/lost
			interrupt
			[5]: Enable CTCSS receive/lost
			interrupt
			[4:3]: reserved
			[2]: Enable TOT time out
			interrupt
			[1]: Enable VOX receive/lost
			interrupt
			[0]: Enable SQ receive/lost
			interrupt
REG_40H R/W 0x3808 reserved		[15:13] Re	eserved
	dev_en	[12]	Enable FM deviation
	dev_sh[3:0]	[11:8] FM	deviation coarse tuningÿ
			0000=max, 1111=min
	dev_lvl[7:0]	[7:0]	FM deviation fine tuningÿ
			0000=min, 1111=max,
			GAIN=(256+dev_lvl[7:0])>>dev
			_sh[3:0]
REG_43H R/W 0x6009 reserved		[15]	Reserved
	firlpf_bw[2:0]	[14:12] RF	filter bandwidth
			(Apass=0.1dB)
			000 = 1.7 kHz
			001 = 2 kHz
			010 = 2.5 kHz
			011 = 3 kHz
			100 = 3.75 kHz
			101 = 4 kHz
			110 - 4 25 kHz
			111 - 15
			111 = 4.3 KHZ
			if wb=1, firlpf_bw *=2;
	firlpf_bw_for_weak[2:0]	[11:9] RF	filter bandwidth when
			signal is weak.

	audio_lpf2_tx_sel[2:0]	[8:6]	Audio LPF bandwidth (Apass=1dB) for Tx 100 = 4.5 kHz 101 = 4.25 kHz 110 = 4 kHz 111 = 3.75 kHz 000 = 3 kHz 001 = 2.5 kHz 010 = 2 kHz 011 = 1.7kHz
	reserved	[5:2]	Reserved
	firlpf_gain[1:0]	[1:0]	Gain after FIR LPF 00=0dB; 01=6dB; 10=12dB; 11=18dB
REG_44H R/W 0x43EC reserved		[15:13] Re	eserved
	fmdem_gain[1:0]	[12:11] Ga	ain after FM Demodulation 00=0dB; 01=6dB; 10=12dB; 11=18dB
	reserved	[10:0]	Reserved
REG_46H R/W 0x8050 vox_rssi_th[15:10]	[15:10] R	SI threshold (2dB/step) for VOX. VOX works only when RSSI is lower than this threshold.
	vox_amp_th_in[9:0]	[9:0]	voice amp threshold for VOX=1 detect
REG_47H R/W 0x6140 reserved		[15]	Reserved
	reserved	[14]	Reserved
	afout_invert	[13]	1 = invert AFOUT
	afout_mode[4:0]	[12:8] 0x1	0 = MUTE 0x11 = RX AFOUT 0x18 = BEEP/TX Side Tone ÿCTCSS/CDCSS is not includeÿ 0x15 = RX ALARM TONE
	reserved	[7:4]	Reserved

	dig_gain_tx[3:0]	[3:0]	Digital gain after MIC ADC, 1dB/
REG_4FH R/W 0x7E34 reserved		[15]	Reserved
	noise_sq_th_out[6:0]	[14:8]	noise threshold for SQ=0
	reserved	[7]	Reserved
	noise_sq_th_in[6:0]	[6:0]	noise threshold for SQ=1
REG_50H R/W 0x033C audio_tx_mu	te	[15]	1=Audio Tx Mute
	reserved	[14:11] Re	eserved
	audio_tx_limit_bypass	[10]	1=Audio Tx Limit bypass
	audio_tx_limit[9:0]	[9:0]	Audio Tx Limit Value
REG_51H R/W 0x1050 subau_en		[15]	1=Enable CTCSS/CDCSS
	reserved	[14]	Reserved
	dcs_invert	[13]	1=Transmit negative CDCSS code
			0=Transmit positive CDCSS code
	ctc_dcs_sel	[12]	CTCSS/CDCSS mode select, 1=CTCSS, 0=CDCSS
	dcs_24b_mode	[11]	24/23bit CDCSS select,
	reserved	[10:7]	Reserved
		[10.7]	
	Subau_gam[0.0]	[0:0]	tuning gain
			[4:0]: CTCSS/CDCSS fine tuning gain
REG_52H R/W 0x028F subau_tail_ge	en	[15]	sub-audio tail generate
	oto tail offs[1:0]	[14:13] [1	0=normal, 1=tail generate
		[1110] 01	select,
			00=No phase shiftÿgenerate
			CTCSS1ÿ
			01=CTCSS0 120°phase shift,
			10= CTCSS0 180°phase shift
			11= CTCSS0 240°phase shift
			CTCSS Phase Decode is not

					supported.
			ctc_th_mode	[12]	ctcss detect threshold mode,
					1=~0.1%; 0=0.1 Hz
			ctc_th_in[5:0]	[11:6] CTC	SS found detect threshold
			ctc_th_out[5:0]	[5:0]	CTCSS lost detect threshold
REG_53H R/V	V 0x97DD	audio_rx_ga	in_sh [2:0]	[15:13] 11	1=max,000=min
					0~-42dB, 6dB/step, digital gain
			audio_tx_gain_sh [2:0]	[12:10] 11	1=max,000=min
			audio ry apin[4:0]	[9:5]	0~-420B, 00D/step, digital gain
			audio_rx_gaiii[4.0]	[5.5]	digital gain 0=mute.31=max.1dB/
			audio tx gain[4:0]	[4:0]	step, digital gain
REG_54H R/V	V 0x8517	scramb_freq[15:0]	[15:0] SCF	AMBLE/FSK frequency
					control word
					=3.3(KHz)*2^26/6500
					- The scrambler inversion
					mixing frequency should be
					kept between 2.6kHz and 3.5kHz
REG_56H R/V	V 0x1021	fsk_crc_poly	n[15:0]	[15:0] CR(C polynomial coefficient,
					CCIT-16 is default
REG_59H R/V	V 0x8078	fsk_tx_fifo_cl	ear fsk_rx_fifo_clear	[15]	Clear TX FIFO, 1=clear
			fsk_scramble_en	[14]	Clear RX FIFO, 1=clear
			fsk_rx_en fsk_tx_en	[13]	1=Enable FSK Scramble
			fsk_rx_data_inv	[12]	1=Enable FSK TX
			fsk_tx_data_inv	[11]	1=Enable FSK RX
				[10]	1=invert FSK data before TX
				[9]	1=invert FSK data after RX
			reserved	[8]	Reserved
			fsk_prmb_size[3:0]	[7:4]	FSK preamble length select,
					length=(fsk_prmb_size[3:0]+1)
					bytes
			fsk_sync_size	[3]	FSK sync length select,
					1=4 bytes

			(fsk_sync_byte0,1,2,3)
			0=2 bytes (fsk_sync_byte0,1)
	reserved	[2:0]	Reserved
REG_5AH R/W 0x85CF fsk_sync_by	te0[7:0]	[15:8]	FSK sync byte0
	fsk_sync_byte1[7:0]	[7:0]	FSK sync byte1
REG_5BH R/W 0xAB45 fsk_sync_b	yte2[7:0]	[15:8] FSP	(sync byte2
	fsk_sync_byte3[7:0]	[7:0]	FSK sync byte3
REG_5CH R/W 0x56F9 reserved		[15:8]	Reserved
	fsk_tx_type_byte[7:0]	[7:0]	FSK type byte to be transmitted.
			"0x01"=FSK Format2
			"0x21"=FSK Format1 without
			CRC
			"0x61"=FSK Format1 with
			CRC
REG_5DH R/W 0x3FCC fsk_length[7:0]	[15:8] FSP	Cdata length when use FSK
			format1
			length=(fsk_length[7:0]+1)
			bytes
	reserved	[7:0]	Reserved
REG_5EH R/W 0x0004 reserved		[15:12] Re	served
	fsk_tx_fifo_ae_th [5: 0]	[11:6]	FSK TX FIFO almost empty
			threshold(unit is 1word=2
			bytes)
	fsk_rx_fifo_af_th[5:0]	[5:0]	FSK RX FIFO almost full
			threshold(unit is 1word=2
			bytes)
REG_5FH R/W	fsk_data[15:0]	[15:0] TX/	RX FIFO Data
REG_60H R	reserved	[15:12] Re	served
	dcs_detect[1:0]	[11:10] [0]	CDCSS positive code received
			[1]:CDCSS negative code received
	reserved	[9:2]	Reserved
	ctc_detect[1:0]	[1:0]	[1]:CTCSS1 received

					[0]:CTCSS0 received
REG_61H	R		snr_out[7:0]	[15:8] SNR indicator, dB/step.	
			reserved	[7:0]	Reserved
REG_62H	R		agc_rssi[7:0]	[15:8]	RSSI after DCC, 1dB/step.
			Ina_peak_rssi[7:0]	[7:0]	RSSI after LNA, 1dB/step.
REG_64H	R		reserved	[15:10] Res	erved
			vox_amp[9:0]	[9:0]	voice amp out.
REG_65H	R		rssi_rel[7:0]	[15:8]	RSSI relative, dB/step
			noise_sq[7:0]	[7:0]	NOISE indicator, dB/step.
REG_67H	R		reserved	[15:9]	Reserved
			rssi_sq[8:0]	[8:0]	0.5dB/step, RSSI (dB) =
					rssi_sq/2 - 160.
REG_70H R/W	0x7070 to	ne1_gen		[15]	Enable TONE1
			tone1_gain[6:0]	[14:8] TON	E1 tuning gain
			tone2_gen	[7]	Enable TONE2
			tone2_gain[6:0]	[6:0]	TONE2 tuning gain
REG_71H R/W	0x2854 to	ne1_freq[15:0]		[15:0] TON	E1 frequency⋅ control
					word
					=freq(kHz)* 2^26/6500
REG_72H R/W	0x3065 to	ne2_freq[15:0]		[15:0] TON	E2 frequency- control
					word
	1				=freq(kHz)* 2^26/6500
REG_73H R/W	0x568A re	served		[15:14] Res	erved
			afc_range[2:0]	[13:11] AF0	C Range:
					000: ~=2.2 kHz
					001: ~=1.5 kHz
					010: ~=1.1 kHz
					011: ~=750 Hz
					100: ~=550 Hz
					101: ~=375 Hz
					110: ~=275 Hz
					111: ~=188 Hz
					if wb, afc range*=2
			reserved	[10:5]	Reserved

			afc_disable	[4]	1=disable AFC
			reserved	[3:0]	Reserved
REG_75H R/W	0 x0FB4 re	esr eved		[15]	Reserved
			mcbsp_test	[14] -	0=normal;
					1=Transmit data equals to
					REG_78H
			reserved	[13] -	Reserved
			mcbsp_fwid[4:0]	[12:8]	Transmit/Receive frame
			mebsp_flen	[7]	Transmit/Receive frame
					length. 1=32 bit; 0=16 bit 0=1
			mcbsp_delay	[6]	data delay; 1=2 data delay
			mcbsp_master	[5]	0=slave mode; 1=master mode
			mcbsp_clks_master	[4]	1= mcbsp clk source master mode;-
					0= mcbsp clk source slave mode-
			mcbsp_clks_psel	[3] -	mebsp clk source polarity select.
			mcbsp_clks_enable	[2]	mcbsp clk source enable
			mcbsp_clk_psel	[1]	Transmit/Receive clock polarity bit. It
					determines the polarity of DCLK as
					seen on the GPIO
					pin.
					0=Transmit/Receive data is
					sampled on the rising edge of
					DCLK.
					1=Transmit/Receive data is
					sampled on the falling edge of
			mcbsp_fs_psel	[0]	Transmit/Receive frame
					synchronization polarity bit. It
					on the CPIO nin-
					0-Transmit/Receive frame
					synchronization pulses are
1	1	1			· · ·

			active high. 1=Transmit/Receive frame
			synchronization puises are
			active low.
REG_76H R/W 0xE307 mcbsp_phas	e_ swap[1:0	[15:14] Mo	CBSP/12S LR data swap for
	Т		32 bit mode.
			[1]: for Tx; [0]: for Rx
	reserved	[13:12] Re	eserved
	mcbsp_dsel	[11]	MCBSP/I2S data output select.
			1=IQ; 0=FM Demodulated
	reserved	[10:9]	Reserved-
	mcbsp_fifo_bypass	[8]	MCBSP/12S FIFO bypass. FIFO is
			not needed in master mode,
			set "1" to bypass FIFO which can
			reduce time on the path.
	mcbsp_cikgdv[7:0]	14:01	mcBSP/i2S generator divide
REG_78H R/W 0x44FF rssi_sq_th_in[7:0]			RSSI threshold for SQ=1,
			0.5dB/step
	rssi_sq_th_out[7:0]	[7:0]	RSSI threshold for SQ=0,
			0.5dB/step
REG_79H R/W 0x1040 reserved		[15:10] Re	served
	vox_amp_th_out[9:0]	[9:0]	voice amp threshold for
			VOX=0 detect
REG_7AH R/W 0x881A vox_delay[3	:0]	[15:12] VC	0X=0 delay, *128ms
	reserved	[11:0]	Reserved
REG_7DH R/W 0x4200 reserved		[15:13] Re	eserved
	dig_gain_rx[4:0]	[12:8]	Gain after AGC, digital down
			conversion. 1dB/step
	reserved	[7:0]	Reserved
REG_7EH R/W 0x341E reserved		[15:8]	Reserved
	dcc_tx_bypass	[7]	1=MICIN DC Filter bypass
	dcc_rx_bypass	[6]	1=Rx DC Filter bypass
	dcc_tx_bw[2:0]	[5:3]	MICIN DC Filter
			bandwidth(3dB) select
			111=15Hz;110=30Hz;101=60H

					z;100=120Hz;
					011=240Hz;010=480Hz;
			reserved	[2:0]	Reserved
REG_87H	R		reserved	[15:7]	Reserved
			cmpd_db_out[6:0]	[6:0]	Audio amplitude output, 1dB/ step.
REG_90H R/	W 0x8C20	reserved		[15:13] Re	served
			soft_mute_en	[12]	1=Enable Soft Mute
			reserved	[11:10] Re	served
			soft_mute_rate[1:0]	[9:8]	Soft Mute Rate (SNR/GAIN)
					00=1/4; 01=1/2; 10=1; 11=2
			soft_mute_atten[1:0]	[7:6]	Soft Mute Atten Level
					00=-16dB; 01=-12dB;
					10=-8dB; 11=-4dB
			snr_th_for_sm[5:0]	[5:0]	SNR Threshold for Soft Mute. If
					SNR little than this value, Soft
					Mute begin.
REG_94H R/	W 0x8F5E	reserved		[15:13] Re	served
			dtmf_det_th[5:0]	[12:7] DTM	IF/ SELCALL detect
					threshold, 1dB/step
			dtmf_symbol_mode	[6]	DTMF/ SELCALL symbol mode
					1="symbol"+"idle"+"sym
					bol"+ (DTMF)
					0="symbol"+"symbol"+"
					symbol"+(5TONE)
			dtmf_in_sel	[5]	1=select gain out
					0=select audio rx out
			dtmf_mode	[4]	Dual/Single Tone Detect mode
					1=dual tone
					0=single tone
			dtmf_symbol_max[3:0]	[3:0]	SELCALL maximum symbol number
					15=symbol "0"~"F"
					(DTMF)
					14=symbol "0"~"E" (THIS)
Register Summary

REG_96H R/W 0x1AE8 rese	rved		[15:14]	
		audio_rx_gain1[5:0]	[13:8] 0=n	nute, 63=max, 0.5dB/step
		cmpd_rx_gain[4:0]	[7:3]	Audio CMPD Gain, 1dB/step
		cmpd_rx_bypass[2:0]	[2:0]	Audio CMPD bypass for RX
				110=bypass with gain
				001=bypass without gain
				000=CMPD ON for RX
				Others=reserved
REG_97H R/W 0x0AA8 reserved			[15:14] Reserved	
		mic_sens_gain[5:0]	[13:8] MIC	sensitivity adjust gain
				0=mute, 63=max, 0.5dB/step
		cmpd_tx_gain[4:0]	[7:3]	Audio CMPD Gain, 0.5dB/step
		cmpd_tx_bypass[2:0]	[2:0]	Audio CMPD bypass for TX
				110=bypass with gain
				001=bypass without gain
				000=CMPD ON for TX
				Others=reserved
REG_98H R/W 0x7A14 rese	ved		[15]	Reserved
		cmpd_rx_factor[2:0]	[14:12] Ex	panding Factor.
				100=1:3;011=1:2.5;010=1:2;00
				1=1:1.5
		cmpd_rx_th_high[5:0]	[11:6] Abo	ove this amplitude point, audio
				will be expanded according to
				the expanding factor. The unit
				threshold is 2dB.
		cmpd_rx_th_low[5:0]	[5:0]	Under this amplitude point,
				audio will be attenuated. The
				unit of this threshold is 2dB.
REG_99H R/W 0x7855 reser	ved		[15]	Reserved
		cmpd_tx_factor[2:0]	[14:12] Co	ompressing Factor.
				111=8:1;110=4:1;100=2:1;000=
				1:1
		cmpd_tx_th_high[5:0]	[11:6] Abo	ve this amplitude point,

Register Summary

					audio will be compressed
					according to the compressing
					factor. The unit of this
					threshold is 2dB.
			cmpd_tx_th_low[5:0]	[5:0]	Under this amplitude point,
					audio will be attenuated. The
					unit of this threshold is 2dB.
REG_9AH R/W	0x0728 re	served		[15:14] Res	served
			cmpd_ct_intvl[5:0]	[13:8] Com	panding Amplitude Detect Interval, 0.64ms/
					step Companding Gain Attack Speed.
			cmpd_atk_step[3:0]	[7:4]	
					0000=most fast
					1111=most slow
			annual ris star [0.0]	[2:0]	Common dian Opin Balance Oraced
			cmpa_ris_step[3:0]	[3.0]	Companding Gain Release Speed.
					0000-most fast
					1111=most slow
REG_9BH R/W 0x0004 reserved			[15:10] Res	served	
			audio_hpf_rx_bypass	[9]	Audio HPF 300Hz bypass for
					RX
			audio_lpf1_rx_bypass	[8]	Audio LPF1 bypass for RX
			audio_lpf2_rx_bypass	[7]	Audio LPF2 bypass for RX
			audio_emph_rx_bypass [6]		DE-EMPHASIS bypass
			reserved	[5:4]	Reserved
			audio hpf tx bypass	[3]	Audio HPF 300Hz bypass for
					ТХ
			audio_lpf1_tx_bypass	[2]	Audio LPF1 bypass for TX
			audio_lpf2_tx_bypass	[1]	Audio LPF2 bypass for TX
			audio_emph_tx_bypass [0]		PRE-EMPHASIS bypass
REG 9DH R/W	0x29AD r	eserved		[15:4]	Reserved
			audio tx path coll1:01	[3.2]	01-coloct pro-omphasis sutput
			auuio_ix_paiii_sei[1:0]	[3.2]	
					10-16361460

Register Summary

				11=select LPF2 output	
		reserved	[1:0]	Reserved	
REG_B6H R/W 0x9d08	reserved		[15:13] Re	eserved	
		subau_rx_dcc_bw[2:0]	[12:10] C1	IC /DCS Rx HPF Bw	
				000=bypass;001=60Hz;010=30 Hz;011=15Hz;	
				100=8Hz;101=4Hz;110=2Hz;11	
				<u>1=1Hz</u>	
		subau_tx_atten_gain[1:	[9:8]	CTC/DCS Tx Atten Gain, -	
		0]		6dB/step	
		subau_rx_gain1[1:0]	[7:6]	CTC/DCS Rx Gain1, -6dB/step	
		subau_rx_gain2[1:0]	[5:4]	CTC/DCS Rx Gain2, -6dB/step	
		subau_rx_gain3[3:0]	[3:0]	CTC/DCS Rx Gain3, -6dB/step	